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We systematically study the evolution of Larichev-Reznik dipoles in an equivalent-barotropic quasigeostrophic beta-

plane model in high-resolution numerical simulations. Our results shed light on the self-organization and rich dynamics

of dipolar vortices, which are ubiquitous in geophysical flows. By varying both dipole strength and initial angle α0

of dipole tilt to the zonal direction, we discover new breakdown mechanisms of the dipole evolution. The dipoles

are quickly destroyed by Rossby wave radiation, if initial tilt is too large or the dipole is too weak; otherwise, via

damped oscillations the dipoles tend to adjust themselves to different states drifting eastward. Two competing physical

mechanisms that govern dipole transformations are found: (1) spontaneous dipole instability due to a growing critical

linear mode; (2) meridional separation of dipole partners that accumulates over the adjustment period and prevents the

above instability. Which mechanism prevails depends on the initial tilt and dipole strength, and the details of this are

discussed.

I. INTRODUCTION

The dynamics of isolated and coherent vortices has at-

tracted the attention of many researchers trying to understand

long-lived geophysical vortices, which are ubiquitous in the

ocean1–3 and atmospheres4–6. Within this broad class of phe-

nomena, we focus on vortex dipoles (i.e., pairs of opposite-

sign vortices) and their long-term evolution. Dipolar couples

transporting fluid inside their cores across large distances are

widespread at the ocean surface7,8, stimulating growing inter-

est in the underlying vortex dynamics9–11.

A classical example exhibiting steady propagation is the

Lamb-Chaplygin dipole (hereafter, LCD)12,13, which is a so-

lution of the two-dimensional (2D) Euler equations. As indi-

cated in (Ref. 14, section 4.3), an LCD with a circular core

tends to slowly evolve towards a state with smoother vorticity

distribution in a slightly elliptical core. While no instability

was detected in the inviscid discretized version of the LCD

with circular separatrix15, the authors noted that the lowest

vorticity levels (not represented in their isovortical discretiza-

tion) might be rapidly stripped from the configuration through

the neighbourhood of the rear stagnation point. Indeed, lin-

early unstable modes were found when explicit viscosity was

included in the system16.

Building from this, a 2D stationary solution (so-called

modon) on the β -plane (taking into account planetary rota-

tion and sphericity) was obtained due to Stern17was found to

be unstable18. Furthermore, a more general solution of the

classical quasigeostrophic (QG) equivalent-barotropic model

(given by rotating top-layer shallow-water dynamics with de-

formable lower interface above motionless deep layer) for

propagating dipoles with a circular separatrix were obtained

by Larichev and Reznik (hereafter, LRD)19.

When a finite internal Rossby radius of deformation is as-

sumed, the LRD solutions are capable of zonal drift in both

eastward and westward directions. The eastward propaga-

tion speed is unbounded, whereas the propagation speed to the

west must exceed the maximum Rossby wave phase speed20

to prevent the vortex losing energy to generated waves21. In

the past, westward propagating LRDs were suggested as a

paradigm for atmospheric blocking22,23, but were later found

unstable24, hence, not suitable for this due to rapid destruc-

tion. On the other hand, eastward propagating LRDs were

found to be remarkably robust in numerical simulations, even

in the presence of weak friction25, short-wave perturbations26

and topographic perturbations27. Proof of their stability, how-

ever, remains evasive24,28,29.

Recently, the phenomenon of spontaneous symmetry

breaking was discovered in eastward weak-intensity LRDs

leading to their ultimate destruction30. The corresponding

unstable growing perturbation has even symmetry about the

zonal axis (similar to the unstable modes obtained for the

evolving viscous LCD16), despite the odd flow symmetry of

the LRD. A normal mode representation of this growing per-

turbation accurately replicates the time evolution, confirm-

ing that the eastward LRD is linearly unstable. This grow-

ing mode was initially referred to as the A-mode30, in accord

with some earlier notation for a similar mode, however, in this

study we refer to it as the Davies mode (D-mode), to empha-

sise its discovery and differentiate it from the A-mode for the

LCD when viscosity is imposed in the system.

The effect of dipole tilt relative to the zonal direction was

examined in (Ref 31), where two regimes were reported. For

weak dipoles with large tilt, the dipole rapidly disintegrated.

However, for most of the cases studied, the dipole experienced

damped oscillations along the zonal axis before adjusting to

new eastward propagating steady states. Here, we include the

effects of dipole tilt using the numerical framework of (Ref.

30). We argue that the instabilities were not captured in (Ref.

31) due to computational constraints on the spatial resolution

of the simulations.
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The structure of this paper is the following: in §2 we formu-

late the nondimensional model, derive the tilted dipole state

and briefly introduce an asymptotic theory for strong dipoles;

in §3 we detail our findings for both strong and weak dipoles;

and in §4 we summarise and discuss the results.

II. MODEL DESCRIPTION

A. Equivalent-barotropic framework

To connect to previous studies, we adopt the equivalent-

barotropic quasigeostrophic (QG) model on the beta-plane

with flat bottom relief32,33:

DΠ̂

Dt̂
= 0 , Π̂ = q̂+ β̂ ŷ , (1)

where β̂ represents the meridional gradient of the Corio-

lis parameter; Π̂ = Π̂(x̂, ŷ, t̂) is the absolute potential vortic-

ity (PV)—a materially conserved quantity on the Lagrangian

fluid elements—and the potential vorticity anomaly (PVA) is

defined as

q̂ = ∇̂
2ψ̂ − R̂−2

d ψ̂ , (2)

with R̂d denoting the internal Rossby radius of deformation

and ψ̂ = ψ̂(x̂, ŷ, t̂) denoting the velocity streamfunction. For

compactness, we make use of the differential operators

D

Dt̂
:=

∂

∂ t̂
−

∂ψ̂

∂ ŷ

∂

∂ x̂
+

∂ψ̂

∂ x̂

∂

∂ ŷ
, ∇̂

2 :=
∂ 2

∂ x̂2
+

∂ 2

∂ ŷ2
, (3)

and hat notation to indicate dimensional physical quantities.

We impose a vortex centred at coordinate (x̂c,0) and per-

form the change of coordinates x̂ = X̂ + x̂c(t̂) and ŷ = Ŷ to

reposition the origin of our reference frame to the vortex cen-

ter. Next, (1) is nondimensionalized by introducing the length

and velocity scales, L̂ and Û , respectively:

∂q

∂ t
−

dxc

dt

∂q

∂X
+JX ,Y (ψ,q)+β

∂ψ

∂X
= 0 , (4)

where the Jacobian operator is defined as

JX ,Y (A,B) :=
∂A

∂X

∂B

∂Y
−

∂A

∂Y

∂B

∂X
, (5)

for functions A and B, and the absence of hat notation indi-

cates the following nondimensional quantities:

(X ,Y,xc) = L̂−1(X̂ ,Ŷ , x̂c) , t = L̂−1Ût̂ ,

β = L̂−2 ˆ
U β̂ , ψ = (L̂Û)−1ψ̂ , q = L̂Û−1q̂ .

(6)

Focusing on steady vortices with purely zonal drift yields

the governing equation

JX ,Y (ψ + cY,∇2ψ +β ′Y ) = 0 , (7)

where c = dxc/dt, β ′ = β + cS and S = (L̂/R̂d)
2.

Following (Ref. 30), the PVA field can be decomposed into

two uniquely defined fields:

qA =
q(X ,Y, t)+q(X ,−Y, t)

2
, qS =

q(X ,Y, t)−q(X ,−Y, t)

2
,

(8)

where qA denotes the A-component, which has even PVA rela-

tive to the zonal axis, and qS denotes the S-component, which

has odd PVA relative to the zonal axis. The benefit of this

presentation is that we can interpret each component as fol-

lows: the S-component perturbation leads to symmetric de-

formation of the vortices around the zonal axis, whereas, the

A-component perturbation leads to the antisymmetric defor-

mation.

Given that ψA,S denotes the A- and S- component of the

velocity streamfuction, respectively, the quadratic invariants

of energy and enstrophy for each component are obtained by

integrating over the doubly-periodic domain Σ:

EA,S =
1

2

∫

Σ

[

(∇ψA,S)
2 +Sψ2

A,S

]

dΣ , ZA,S =
1

2

∫

Σ

q2
A,S dΣ ,

(9)

where dΣ = dX dY ; and the summations E = EA + ES and

Z = ZA +ZS are conserved for the inviscid case, as described

by (7).

Explicit Newtonian viscosity can be incorporated into the

equivalent-barotropic model by setting the left-hand side of

(7) equal to Re−1
∇

4ψ , where Re = (L̂Û)−1ν̂ is the Reynolds

number, and ν̂ denotes eddy viscosity. However, since we are

interested in solutions to the inviscid problem (7), we make

use of very small implicit numerical viscosity in our simula-

tions, which we discuss later. This decision is also motivated

by the results of the sensitivity analysis carried out in (Ref.

30), where consistency is found between simulations using

explicit Newtonian viscosity and implicit numerical viscosity.

B. LRD initialization

A class of exact solutions to (7) over an infinite domain

are the LRD steady states, which are derived from the relative

vorticity relation,

∇
2ψ =

{

−k2ψ − c(k2 + p2)r sin(ϑ −α0), r ≤ 1 ,

p2ψ, r > 1 ,
(10)

where (r,ϑ) are standard polar coordinates. Here, r = 1 de-

fines a circular separatrix (L̂ is chosen to be the vortex ra-

dius); p2 = β/c+ S > 0; α0 = 0◦,180◦ (eastward and west-

ward propagation, respectively); and k is a positive constant

satisfying the nonlinear equation:

kJ1(k)

J2(k)
=−

pK1(p)

K2(p)
, (11)

where Jµ and Kµ are the order-µ Bessel and modified Bessel

functions of the first kind, respectively. This equation has an

infinite number of solutions for k, but we considered only

dipoles with the lowest k. Based on the work of (Ref. 18)
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FIG. 1. Physical fields corresponding to the dipole with β = 2c and

tilted at α0 = 5◦: (a) A-component of PVA, qA (i.e., the T-mode);

(b) S-component of PVA, qS; (c) PVA; (d) PV.

for shielded vortex structures on a QG beta-plane and (Ref.

11) for surface-QG vortex solutions with higher radial mode

numbers, we anticipate that higher order modes will be unsta-

ble and rapidly break down.

We further assume that the dipole is spatially localized, i.e.,

ψ → 0, as r → ∞ (more specifically, this is exponential de-

cay), and the solution is continuous and continuously differ-

entiable across the separatrix. The streamfunction field can be

expressed in the form

ψ(r,ϑ) = crF(r)sin(ϑ −α0) , (12)

where

F(r) =

{

(p/k)2(J1(kr)/rJ1(k)−1)−1, r ≤ 1 ,

−K1(pr)/rK1(p), r > 1 ,
(13)

and the corresponding PVA components are:

qA(r,ϑ) =−XQ(r)sinα0 , qS(r,ϑ) = Y Q(r)cosα0 , (14)

where

Q(r) =

{

−c(F(r)+1)(S+ k2)−β r ≤ 1 ,

βF(r), r > 1 .
(15)

In this work we investigate tilted dipoles for S = 1, i.e.,

L = Rd , launched at angles 0 < α0 ≤ 90◦ to the zonal axis.

As a consequence of this, qA is nonzero and the tilted LRDs

do not satisfy (7), i.e., the dipoles we consider are no longer

steady states. Note that in this case, the A- and S- components

are computed about the zonal coordinate axis, rather than the

dipole translation axis, which are equivalent only for the east-

ward LRD. Fig. 1 contains visualizations of the A- and S-

components and will help the readers to understand the story,

as it evolves. Hereafter, the A-component as depicted in Fig.

1a is referred to as the tilted mode (T-mode).

In the (eastward propagating) case α0 = 0◦ and for dipoles

with β/c ≥ 2, the component qA (i.e., D-mode) was initially

FIG. 2. Upper panels show snapshots of the PVA of the D-mode

that develops during the intermediate stage of linear growth for a

weak eastward dipole, while the bottom panels show the associated

elongations and compressions that the dipole pair experiences, in re-

sponse to the growing D-mode (e.g., (a) causes deformations so that

the dipole tilts, as seen in (e), whereas, (b) causes zonal elongation

and zonal compression in the anticyclone and cyclone, respectively,

as seen in ( f ).)

zero but appeared due to spontaneous symmetry breaking and

shown to oscillate and grow exponentially over time30Ṫhis

growth caused the dipole to develop asymmetries through

elongation and compression of the vortex pair (Fig. 2). The

ultimate result was the destruction of the dipole, with the vor-

tex partners decelerating and drifting apart, before propagat-

ing in the (opposite) westward direction. At later times, they

continued drifting apart and eventually disintegrated into the

background flow as in (Ref 34). A combination of dynami-

cal evolution associated with T-mode depicted in Fig. 1a and

D-mode (Fig. 2) is expected to be seen in the case of α0 ̸= 0◦.

C. Kinematics of tilted dipoles

For dipoles, let us consider the coordinates of the positive

and negative PVA extrema, (X1,Y1) and (X2,Y2), respectively.

The dipole tilt is then characterized by

∆X = X1 −X2 = Dsinα, ∆Y = Y2 −Y1 = Dcosα, (16)

where D is the distance between extrema,

D =
√

(∆X)2 +(∆Y )2 , (17)

and α is the evolving angle, such that α(0) = α0. The dipole

center is defined as (Xc,Yc), with

Xc =
X1 +X2

2
, Yc =

Y1 +Y2

2
, (18)

while the zonal and meridional drift components of the dipole

center,

uc =
dxc

dt
, vc =

dyc

dt
, (19)
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respectively, give the propagation velocity. These components

allow us to obtain the corresponding dipole speed as

V =
√

u2
c + v2

c . (20)

For very strong dipoles (c ≫ β ), a simple kinematic the-

ory described in (Ref. 35) predicts the center trajectory,

(xc(t),yc(t)), by neglecting changes in the distance between

the dipole extrema (i.e., D = D0), and in the dipole center ve-

locity V = c. This theory tells us that the evolution of the

dipole angle, α(t), is given by the equation

dα

dt
=−

βV

Md

yc , (21)

where Md =
∫

Q(r)r3 dr ≃ 3V is the magnitude of the LRD

moment, which is described by (13)–(15) with β = 0 and

normalized by the area of fluid trapped inside the separatrix.

Combining (21) with

dyc

dt
=V sinα , (22)

allowed the full trajectory to be predicted by the equation for

the physical pendulum. Thus, for the north-eastward LRDs

we expect to see oscillatory behaviour in the displacement of

the dipole center around the equilibrium latitude. The maxi-

mum excursion Ym is given in (Ref. 35) as

Ym = 2

√

Md

β
sin

(

α0

2

)

. (23)

Both the kinematic theory (21)–(22) and numerical simula-

tions in (Ref. 31) showed that initially tilted LRDs evolve by

damped oscillations, and the corresponding mechanism was

identified by (Ref. 36), where a PV conservation argument

showed that the adjustment is achieved through the dipole

losing enstrophy to the surrounding background flow. This

mechanism can be incorporated into (21) as

dα

dt
=−

βV (yc +λ sinα)

Md

. (24)

In this case the dipole evolution calculated from (22)–(24) dis-

plays decaying oscillations which depend on the damping pa-

rameter λ . Neither this theory nor the numerical solutions in

(Ref. 31) take into account potential instability of the eastward

LRDs30, which motivates more in-depth studies. Now that

we have reviewed some theoretical work pertaining to tilted

dipoles, we proceed in the following section to extract new in-

formation for tilted LRD dynamics using high-resolution nu-

merical simulations.

III. NUMERICAL EXPERIMENTS

A. Methodology

We solve (1) on a doubly-periodic computational domain of

size (4LY ,LY ) = (60,15) with 4N ×N = 8192×2048 nodes.

FIG. 3. Dipole evolution animations corresponding to the parameter

space described in (25) for 0 ≤ t ≤ 200. We present animations for

this parameter space with values of α0 increasing from top to bottom.

The strongest LRD with c/β = 1 is shown in the left column, while

other columns show progressively weaker LRDs, with the right-most

column corresponding to c/β = 0.25. Multimedia view:

Motivated by mesoscale observations, we consider dipoles on

the scale of the internal Rossby radius of deformation, that is,

L̂ = R̂d (consequently, S = 1). Furthermore, to draw compar-

isons with (Ref. 31), we nondimensionalize so that c = 0.1
(so that Û = 10ĉ, where ĉ is the dimensional equivalent of c)

and explore the following parameter space:

(α0,β ) = [5◦,30◦,45◦,60◦,90◦]× [1,2,3.5,4]c , (25)

where α0 ≤ 45◦ is referred to as small tilt and α0 > 45◦ is re-

ferred to as large tilt. We also use the terms weak and strong to

correspond with c < β ≤ 4c and β ≤ c, respectively. Bench-

mark solution animations for this parameter space are shown

in Fig. 3 with Multimedia view.

To verify our results, we made use of two distinctly differ-

ent numerical models. For consistency with (Ref. 30), we use

finite differences with the CABARET advection scheme; the

algorithm is described in detail in (Ref. 37), and the numerical

convergence properties of the model in relevant flow regimes

with rich mesoscale dynamics are discussed in (Refs. 38 and

39).

For consistency with (Ref. 31) and to validate our results,

we also performed simulations using the Dedalus Python

package, which combines a pseudo-spectral approach in space

with a fourth-order implicit-explicit Runge-Kutta scheme for

time integration40. This approach necessarily includes ex-

plicit dissipation represented through a hyperdiffusion term,

whereas the CABARET approach has implicit numerical dif-

fusion, which is minimized at each timestep through the ad-

vection scheme.

We estimated a numerical viscosity value corresponding
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to dissipation in our CABARET simulations and used it to

set equivalent hyperdiffusion parameter in the pseudo-spectral

model. We found that both methods yield similar solutions

(see the supplementary material), therefore, we primarily

present CABARET results, though supplementary animations

in Fig. 3 (Multimedia view) are obtained with the Dedalus

package.

B. Overview of results

The dipole evolution is analyzed by considering both the

trajectory of the dipole center (xc,yc) and changes in the in-

ternal dipole structure, as characterized by the propagation

speed, V , and the distance between extrema, D, defined in

§II C. The coordinates of the positive and negative dipole

extrema (X1,Y1) and (X2,Y2) are evaluated using local 2D-

parabolic interpolation.

Comparing with the kinematic theory we found new be-

haviour in the evolution of dipoles with β/c = 1 (strong

dipoles) and with β/c ≥ 2 (weak dipoles). These modifica-

tions to the dipole dynamics are mostly related to growing

D-mode on top of decaying T-mode, which become clearly

visible when the vortex crosses the zonal axis.

Strong dipoles adjust themselves along the zonal axis and

appear to continue eastward propagation. Nevertheless, over

the course of this adjustment phase, one can see moderate in-

crease of partner separation and associated deceleration in the

upper panels in Fig. 4 and Table 1. Note that the originally D-

mode was described only for weak eastward LRD solution30.

Here, growing D-mode is revealed also for the strong dipoles

though they are not destroyed during the time of integration

and their structure still resemble the initial LRD.

Weak dipoles for α ≤ 45◦, decelerate with partners separat-

ing by more than 30% and a reversal in the direction of zonal

propagation (lower panels in Fig. 4), similar to the effects of a

growing D-mode in the eastward LRD30. For strong and weak

dipoles with a range of tilts, our findings are summarized in

Fig. 5, where there are both similarities with and notable dif-

ferences from (Ref. 31).

Hence, to clarify novelties of the observed phenomena, we

make a detailed comparison of the various regimes over the

following sections where the modification in the spatial struc-

ture of the dipoles is illustrated by snapshots of the PVA A-

component, while the relative intensity function,

qm(t) =
qA(X1,Y1, t)+ |qA(X2,Y2, t)|

2max
X ,Y

qA(X ,Y,0)
, (26)

describes the time evolution of the A-component amplitude in

the dipole normalized by its initial intensity.

C. Strong dipole evolution

Fig. 6 shows the evolution of the meridional position of

the dipole center, yc, for the case of strong dipoles. Decaying

oscillations can clearly be seen. It should be noted that these
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FIG. 4. (V/c,D)-plots. Upper rows with β = c and: (a) α0 = 5◦

(blue), α0 = 30◦ (red), (b) α0 = 45◦ (blue), α0 = 60◦ (red); and

lower rows with β = 2c and the same values of α0 in corresponding

subplots. The data is for 0 ≤ t ≤ 400.
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FIG. 5. (α0,β )-parameter space summarising possible outcomes for

the dipole evolution for 0≤ t ≤ 400: open circles indicate destruction

due to early dipole-Rossby wave interaction when initial tilt is large;

diamonds indicate slow D-mode-induced destruction with ts > 100

(where ts is the time at which the dipole changes direction); filled

circles indicate slow decay of dipole intensity and increased merid-

ional partner separation that accumulates over adjustment period and

prevents instability.

oscillations persist for all cases studied—see the supplemen-

tary material for the case of weak dipoles.

In the case of strong dipoles with α0 = 5◦, the modelled

dipole trajectory is compared with the kinematic-theory tra-

jectory (Fig. 7), where we used λ = 0.2 and normalized

∆X ∼ Dsinα and yc with D0 sinα and Ym (as defined in (17)),

respectively. The similarity between numerical and predicted

trajectories suggests that the theory is valid within the strong

dipole regime for small initial tilts as the vortex structure

remains approximately unchanged throughout the evolution.

However, significant deviations in the numerical trajectory in

Fig. 7 become visible when t ≥ 300, suggesting a transition

in dynamics results in a discrepancy with the kinematic theory

to be investigated further.

By t = 400, the vortex has undergone a small deceleration
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α0 D(t)/D0 −1 V (t)/c−1

5◦ (0.5,1.1)% −(1.0,3.0)%
30◦ (1.0,6.0)% −(5.2,20.1)%
45◦ (0.71,5.1)% −(7.1,21.0)%
60◦ (0.14,1.5)% −(6.7,12.2)%
90◦ (1.7,3.2)% −(16.7,25.5)%

TABLE I. Percentage change in partner separation and dipole de-

celeration for β = c, with first entries corresponding to t = 200 and

second entries corresponding to t = 400.

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

FIG. 6. Comparative evolution of meridional position of the dipole

center, yc, for an initially tilted LRD with β = c: blue curve corre-

sponds to α0 = 5◦, red curve — to α0 = 30◦, magenta curve — to

α0 = 60◦, and green curve — to α0 = 90◦. Solutions were obtained

for 0 ≤ t ≤ 400.

and an increased partner separation of V/c− 1 ∼ −3% and

D/D0 −1 ∼ 1.1%, respectively. These alterations are consis-

tent with the dynamics of symmetric eastward drifting LRDs

studied in (Ref. 30), which continued translating as a steady

state, with deceleration and small partner separation resulting

from implicit numerical viscosity.

To better understand the spiral deviations in Fig. 7, we con-

sider times tℓ corresponding to intersections of the dipole tra-

jectory with the zonal axis (i.e., yc(tℓ) = 0, with ℓ= 1,2,3...).
Eight intersections are observed in Fig. 6 for α0 = 5◦,30◦,60◦

over the time of integration 0 ≤ t ≤ 400, and seven inter-

sections for α0 = 90◦. The simple tilted mode (or T-mode)

structure of the A-component at initialisation (see Fig. 1a)

is assumed to remain at each intersection according to the

kinematic theory, while the amplitude of the A-component,

qA ∼ sinα , is expected to decay at subsequent crossings to-

gether with the angle α(tℓ), similarly to |∆X(tℓ)|/Dsinα0 in

Fig. 7. To evaluate the predictions of the kinematic dipole

theory for strong dipoles, we compare the predicted amplitude

decay with the values of qm(tℓ) in our solutions for different

values of α0.

Values of qm(tℓ) are plotted in Fig. 8 for different initial

angles and correspond well to the theoretical T-mode predic-

tion of α(tℓ) for the earlier crossings. However, a significant

increase in the value of qm can be seen in Fig. 8 at ℓ = 7,8
(t > 300) for α0 = 5◦ and α0 = 30◦. Such increases indicate

the dominance of a growing D-mode (compare with Fig. 2)

that becomes clearly visible at the final two crossings (see the

FIG. 7. (∆X ,yc)-spiral for (α0,β ) = (5◦,c) and over the domain 0 ≤
t ≤ 400: the thick black spiral corresponds to the kinematic theory for

strong dipoles, while the dotted red spiral represents our numerical

modelling results.

-1 0 1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

FIG. 8. Values of qm at zonal axis crossings, ℓ, for β = c and: α0 =
5◦ (blue), α0 = 30◦ (red), α0 = 60◦ (magenta), α0 = 90◦ (green).

Thick black line corresponds to theoretical decay when α0 = 5◦, as

described by ∆X/D0 sinα0, where ∆X ∼ Dsinα . Note that ℓ = 0

corresponds to initialization.

supplementary material and Fig. 9). This earlier D-mode ap-

pearance in comparison with strong non-tilted eastward LRDs

in (Ref. 30) indicates that the dipole perturbations due to tilt

play a catalytic role and favour the instability, which appears

only in weak eastward LRDs over the time of integration.

Moreover, the growth rate between the final zonal axis

crossings is

σ =
(qm(t8)−qm(t7))/qm(t7)

t8 − t7
∼ 0.006, (27)

for α0 = 5◦, which is smaller than D-mode growth for weak

eastward LRDs30. Note, the increase in qm between the last
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FIG. 9. qA snapshots for (α0,β ) = (30◦,c) at times where yc = 0.

(a) t5 ∼ 240, (b) t6 ∼ 290, (c) t7 ∼ 340, and (d) t8 ∼ 390.

FIG. 10. qA snapshots for (α0,β ) = (60◦,c) at times where yc = 0.

(a) t5 ∼ 245, (b) t6 ∼ 285, (c) t7 ∼ 335, (d) t8 ∼ 380.

crossings is weaker, σ ∼ 0.003, for α0 = 30◦, despite there

being a greater partner separation of 6% and dipole decelera-

tion of 20% at t = 400 (see Fig. 4a). This increased distance

between dipole partners contributes to slower D-mode devel-

opment as seen also for α0 = 45◦ (Fig. 4b).

For an initial launch of α0 = 60◦ the growing D-mode is not

seen, instead we observed a monotonic and approximately lin-

ear decrease in qm(tℓ) at consecutive values of ℓ (see Fig. 8)

and find that the A-component evolves as a decaying T-mode

of alternating sign (see Fig. 10). However, at later times one

can see meridional splitting of the T-mode (Fig. 10d), reflect-

ing another mechanism to cause the separation between part-

ners, though the apparent partner separation appears less than

that caused by the growing D-mode for smaller tilt α0 = 45◦

(see Fig. 4b). Such adjustment of the dipole to an elliptical

(meridionally elongated) shape is accompanied by a decrease

in the deceleration magnitude for t > 250. Further investiga-

tions in substantially longer domains, over much longer times,

and with much higher resolution (to suppress implicit viscos-

ity) go beyond the scope of this paper.

α0 D(t)/D0 −1 V (t)/c−1

5◦ (6.3,36.6)% −(21.6,89.2)%
30◦ (18.1,37.8)% −(60.5,100.1)%
45◦ (14.9,39.8)% −(52.4,102.4)%
60◦ (62.2,65.3)% −(58.8,67.0)%
90◦ (50.1,300)% −(−99.1,57.4)%

TABLE II. Percentage change in partner separation and dipole de-

celeration for β = 2c, with first entries corresponding to t = 200 and

second entries corresponding to t = 400. When α0 = 90◦, the dipole

disintegrates into the background completely at t ∼ 280.

Similar T-mode persistence with alternating sign value is

observed in the dynamics when α0 = 90◦ (see the supplemen-

tary material). However, despite approximately linear depre-

ciation in qm up until ℓ = 5, this decay becomes significantly

weaker at ℓ = 6,7 (see Fig. 8). Even though this is still a

monotonically decreasing pattern, the change in decay sug-

gests that there might be some transition in dynamics to be

investigated further.

In summary, our analysis for strong dipoles with β = c re-

vealed two distinct scenarios:

1. The development of a slowly growing D-mode when

initial tilt is small, i.e., 0 < α0 ≤ 45◦,

2. The gradual splitting of a decaying T-mode (without the

appearance of a D-mode) when the initial tilt is large,

i.e., 45 < α0 ≤ 90.

Further investigations are needed over a much larger interval

of time to clarify the fate of D- and T-modes in strong dipoles.

D. Slow destruction of weak dipoles

Our numerical simulations indicate that weak dipoles re-

leased at an angle α0 ∈ [5◦,90◦] initially follow oscillatory

paths that decay over time (see the supplementary material),

comparable to the case of strong dipoles. In (Ref. 31),

weak dipoles only disintegrate at large α0 (corresponding to

α0 = 90◦ when β = 0.2 and α0 = 60◦,90◦ when β = 0.35),

otherwise orienting themselves along the zonal axis, display-

ing approximate steady translation in the eastward direction.

Given the destruction of purely eastward weak dipoles was

attributed to the growth of the D-mode in (Ref. 30), we antic-

ipate this anomaly to develop on an initially tilted dipole after

the adjustment phase.

For weak dipoles with (α0,β ) = ([5◦,30◦,45◦],2c), we

find a phase transition in qA at intersections with the zonal

axis (yc = 0). In particular, when α0 = 5◦, the T-mode at

zonal axis crossings rapidly evolve into a growing oscilla-

tory D-mode (see Fig. 11). Consequently, the eddy partners

are driven much further apart than for strong dipoles, with

D/D0 −1 ∼ 6.3%,36.6% at t = 200,400, respectively, (com-

pare Figs. 4a,c). This is also reflected in their deceleration,

where V/c−1 ∼−21.6%,−89.2% when t = 200,400, which

is consistent with the dynamics of eastward LRDs with grow-

ing D-mode30.
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FIG. 11. qA snapshots for (α0,β ) = (5◦,2c) at times where yc = 0.

(a) t2 ∼ 60, (b) t4 ∼ 120, (c) t7 ∼ 180, (d) t15 ∼ 240.

FIG. 12. qA snapshots for (α0,β ) = (45◦,2c) at times where yc = 0.

(a) t2 ∼ 60, (b) t4 ∼ 130, (c) t6 ∼ 200, (d) t8 ∼ 270.

Observed destruction of tilted weak dipoles is consistent

with previous numerical simulations using a barotropic model

(L ≪ Rd) (Ref. 14, section 4.2.2). The similar weak inten-

sity dipole (β/c = 2), launched at α0 = 5◦, relaxed along the

zonal axis and proceeded to disintegrate. This disintegration

was attributed to the filamentation process and the emission of

Rossby waves, suppressed by the use of a cutting filter in the

far field, which encouraged drastic deceleration and allowed

the separation distance between partners to grow.

In our simulations, similar results are obtained when α0 =
30,45◦ (see Fig. 12), though with longer T-mode persistence

before D-mode formation. The dipole partners experience in-

creased separation and greater dipole deceleration (compare

Fig. 4c and Fig. 4d), while the zonal dipole drift becomes

westward at tS ∼ 400. Therefore, even though such opposite

sign couples remain self-advecting eastward until t = 400, the

amplifying D-mode will inevitably disintegrate the dipole in

longer simulations.

For even weaker dipoles with β = 0.35, a growing D-mode

emerged for α0 = 5◦,30◦, which results in the subsequent dis-

integration of the dipole for t < 200 (see the supplementary

material and Fig. 3: Multimedia view). Such disintegration

is consistent with (Ref. 30), however, our results throughout

§III D differs with those obtained in (Ref. 31), where adjust-

ment to a seemingly steady eastward propagating state was

observed for 0 ≤ t ≤ 400. We believe that these discrepancies

are due to the 16 times coarser numerical resolution adopted

in their 30 years old study, which meant they were unable to

capture the instability of weak eastward propagating dipoles.

To summarize our findings in this subsection, we have ob-

served the following:

1. Weak dipoles developed a D-mode over time when 0 <
α0 < 45◦ (and for α0 = 45◦ when β = 2c),

2. A growing D-mode decelerates the weak dipoles and

increases the core distance between the opposite sign

pair, encouraging the spontaneous symmetry breaking

phenomena, as found for symmetric weak eastward

LRDs30.

3. β = 3.5c dipoles completely disintegrate within the

time interval 0 ≤ t ≤ 400, whereas, β = 2c dipoles be-

gin to propagate westward much later and would com-

pletely disintegrate if simulated for longer time.

E. Adjustment or fast destruction of weak dipoles

Weak dipoles with (α0,β ) = (60◦,2c) have qA evolve as a

decaying T-mode (see Fig. 13) comparable to what we ob-

served with strong dipoles (see Fig. 10). However, a notable

difference is that D/D0 − 1 ∼ 62.2% at t = 200, correspond-

ing to a much greater separation than observed for β = c. This

deformation is similar to the meridional separatrix stretching

captured in simulations for dipoles with initially circular sep-

aratrix in (Ref. 14). Despite the large meridional separation at

early times, this elliptical deformation does not change signifi-

cantly between 200≤ t ≤ 400 (see table II), and these small al-

terations are likely due to implicit numerical viscosity41. Fur-

thermore, the much lower deceleration experienced compared

to cases with smaller values of α0 suggests that the dipole

transforms to a non-circular steady state. This agrees with the

steady adjustment discussed in (Ref. 31) and the theoretical

predictions for strong dipoles in (Ref. 36), though these stud-

ies did not discuss elliptical deformation.

Weak dipoles with (α0,β ) = (90◦,2c) disintegrate in the

interval 0 ≤ t ≤ 280 as observed in (Ref. 31). Indeed, a de-

caying T-mode similar to that seen when α0 = 60◦ elucidates

the dipole dynamics for this parameter regime where the val-

ues of D and V rapidly increase over time (see the supplemen-

tary material). This destruction occurs much earlier than that

achieved by a D-mode and is due to significant Rossby wave

radiation. More specifically, the trajectory of the dipole ex-

poses the vortex to interaction with the trailing Rossby waves,

which enhances the rapid disintegration.

Finally, when α0 ≥ 45◦ for the weaker β = 3.5c dipole,

a D-mode does not appear over the considered time interval,
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FIG. 13. qA snapshots for (α0,β ) = (60◦,2c) at times where yc = 0.

(a) t2 ∼ 60, (b) t5 ∼ 170, (c) t8 ∼ 280, (d) t11 ∼ 390.

and instead we see components of decaying T-mode decel-

erate and drift apart, before the disintegration of the dipole.

Since a D-mode appears when α0 = 45◦ and β = 2c, this sug-

gests the existence of some bifurcation point in (α0,β )-space,

where there is a transition between D-mode and T-mode dom-

inance. To confirm this, more research is needed. Finally, in

the extreme case when α0 = 90◦, weak dipoles with β = 3.5c

disintegrate much faster than for other initial tilts, as in (Ref.

31) and (Ref. 34).

To summarize:

1. qA evolves as a decaying T-mode rather than a growing

D-mode for weak dipoles when α0 > 45◦ (and for α0 =
45◦ when β = 3.5c),

2. Weak dipoles with β = 3.5c rapidly disintegrate when

α0 ≥ 45◦, with the dipole lifespan shortening as α0 in-

creases,

3. When β = 2c and α0 = 90◦, the dipole disintegrates

much faster than with a growing D-mode, as a conse-

quence of Rossby wave radiation,

4. When β = 2c and 45◦ < α0 < 90◦, elliptic deforma-

tion of the separatrix and large enstrophy loss inhibit

D-mode development and drives the adjustment to ap-

proximate steady propagation along the zonal axis.

IV. CONCLUSIONS AND DISCUSSION

Motivated by the ubiquity of isolated coherent vortices in

geophysical (i.e., rotating and stratified) fluids, we investi-

gated the dynamics of mesoscale vortex dipoles launched with

different north-eastward tilts to the zonal direction. We con-

sidered an idealized equivalent-barotropic QG model in an

oceanic configuration, and numerically simulated the evo-

lution of individual LRDs19 for a physically relevant range

of parameters, focusing both on transient and long-time be-

haviours. While motivated by the important work of our fore-

runner (Ref. 31), we were able to extend their analysis us-

ing more advanced numerical schemes and techniques. These

tools allowed us to re-examine their results and discover new

dynamical behaviours, thus enriching our understanding of

the long-term behaviour of coherent vortices. In particular,

we found dynamical sensitivities to both the initial-tilt angle,

α0, and the initial intensity of the dipole, β/c.

Even strong dipoles (i.e., β = c; here, nondimensional plan-

etary vorticity gradient and dipole speed, respectively) for

moderate initial tilts (i.e., α0 ≤ 45◦) eventually developed a

critical D-mode instability30, resulting in essential deviations

from the predictions of the kinematic strong-dipole theory in

(Ref. 35). This theory allows only for an alternating sign T-

mode with the initial profile of qA, as depicted in Fig. 1a,

and decaying with time as in Fig. 7 and 8 with damping sug-

gested in (Ref. 36). For large tilt (i.e., α0 > 45◦), our results

are more aligned with the kinematic theory, while displaying

meridional separation of dipole partners (illustrated by a split-

ting of the T-mode in Fig. 10) that accumulates over the ad-

justment period and prevents the above instability so that the

D-mode did not develop for large tilt.

In the case of moderate initial tilt, weak dipoles experi-

enced either a combination of significant partner separation

with overall deceleration, or complete destruction owing to

fast developing of the D-mode. In the case of large initial tilts,

more pronounced elliptical deformation of the dipole core—

corresponding to meridional splitting of T-mode—was found

to dominate over the D-mode, as the dipole underwent os-

cillations along the zonal axis until adjusting to steady-state

eastward propagation. For extreme large tilts (e.g., α0 = 90◦)

and/or very weak dipoles (β = 3.5c), these structures disinte-

grated rapidly by radiating Rossby waves and proceeding to

interact with them; leaving no time for the D-mode destruc-

tion mechanism.

Our numerical simulations employed very small implicit

numerical viscosity in the background, however, the work pre-

sented in (Ref. 41) showed that with explicit Newtonian vis-

cosity (and β = 0) there exists an elliptical dipole structure

that distinct circular dipole initializations converge towards

as time progresses. These states are found to be unsteady,

as characterized by decaying amplitude and increasing vortex

size, which is broadly similar to our findings for large α0, and

suggests that this adjustment would be stable in the inviscid

limit (if implicit numerical viscosity was exactly zero).

In summary, we found and analysed different dipole pa-

rameter regimes, and reported evolution scenarios never pre-

viously discussed. All these cases may exist and co-exist in

nature, but they are likely to be influenced by other unac-

counted physical processes, such as realistic large-scale cir-

culation, stratification and topographic effects. Therefore, our

results should act as a catalyst for further research.

V. SUPPLEMENTARY MATERIAL

See the supplementary material for animations of the dipole

propagation and additional figures that support the results of

this study.
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