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Here, we examine baroclinic instability in the presence of vertical mixing in

an idealized setting. Specifically, we use a simple model for vertical mixing

of momentum and buoyancy and expand the buoyancy and vorticity in a series

for small Rossby numbers. A flow in subinertial mixed layer (SML) balance

(Young (1994)) exhibits a normal mode linear instability which is studied here

using linear stability analysis and numerical simulations. The most unstable

modes grow by converting potential energy associated with the basic state

into kinetic energy of the growing perturbations. However, unlike the inviscid

Eady problem, the dominant energy balance is between the buoyancy flux and

the energy dissipated by vertical mixing. Vertical mixing reduces the growth

rate and changes the orientation of the most unstable modes with respect to the

front. By comparing with numerical simulations, we find that the predicted

scale of the most unstable mode matches the simulations for small Rossby

numbers while the growth rate and orientation agree for a broader range of

parameters. A stability analysis of a basic state in SML balance using the in-

viscid QG equations shows that the angle of the unstable modes is controlled

by the orientation of the SML flow, while stratification associated with an ad-

vection/diffusion balance controls the size of growing perturbations for small

Ekman numbers and/or large Rossby numbers. These results imply that baro-

clinic instability can be inhibited by small-scale turbulence when the Ekman

number is sufficiently large and might explain the lack of submesoscale ed-

dies in observations and numerical models of the ocean surface mixed layer

during summer.
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1. Introduction33

The ocean surface mixed layer plays a central role in the climate system by mediating transfers34

of heat, carbon, and other important tracers between the atmosphere and deep ocean and influ-35

encing the rate of primary production (Lorbacher et al. 2006; Sverdrup 1953). The mixed layer is36

subject to intense small-scale turbulence driven by a wide variety of processes including convec-37

tion, wind stress and breaking waves which lead to the nearly vertically uniform density field that38

characterizes the mixed layer (Shay and Gregg 1986; Kato and Phillips 1969; Thorpe 2005).39

The mixed layer also contains horizontal density gradients (e.g. Rudnick and Ferrari (1999)) in40

the form of fronts on a wide range of horizontal scales (e.g. Callies and Ferrari (2013)). The avail-41

able potential energy associated with the horizontal density gradients fuels mixed layer baroclinic42

instability (or MLI) (Boccaletti et al. 2007; Fox-Kemper et al. 2008) which generates submesoscale43

eddies while re-stratifying the mixed layer. Although MLI develops in a highly turbulent environ-44

ment, most previous attempts at a linear stability analysis of MLI have neglected the influence of45

small-scale turbulence. Our objective in this paper is to examine the influence of vertical mixing46

on baroclinic instability.47

Observations and numerical simulations have reported a strong seasonal cycle in submesoscale48

activity (Capet et al. 2008; Mensa et al. 2013; Sasaki et al. 2014; Callies et al. 2015; Thompson49

et al. 2016). Factors that could modulate submesoscale instabilities include the mixed layer depth,50

horizontal density gradients, and turbulent mixing (e.g. Boccaletti et al. (2007); Bachman and51

Taylor (2016); Callies and Ferrari (2018)). While the growth rate for MLI does not depend directly52

on the mixed layer depth (Stone 1966; Fox-Kemper et al. 2008), the potential energy available for53

release by MLI does (Callies et al. 2015). It remains unclear whether MLI is less energetic and54

more difficult to detect in the summer, or whether it is arrested entirely. Here, we will show that55
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vertical mixing can arrest baroclinic instability in the limit of small Rossby numbers and strong56

mixing. This result might help explain the lack of submesoscale activity in the summer.57

Recently Callies et al. (2016) used a two layer Quasi-Geostrophic (QG) model to explore how58

baroclinic mixed layer instability energizes submesoscale turbulence. Interestingly, their model59

results are consistent with available observations, despite using the QG limit of small Rossby60

number to describe structures with a Rossby number in the range of 0.1− 1. This suggests that61

QG dynamics may be useful to qualitatively describe submesoscale processes, although non-QG62

dynamics are still needed to describe phenomena such as ageostrophic instabilities (e.g. symmetric63

instability) and submesoscale frontogenesis (Shakespeare and Taylor 2013).64

Young (1994) introduced the sub-inertial mixed layer (SML) model using an asymptotic expan-65

sion in small Rossby number and a simple parameterization of turbulent mixing to consider the66

effect of horizontal salinity and temperature gradients on shear and stratification in the mixed layer.67

For a vertically-sheared flow in thermal wind balance, vertical mixing of momentum leads to an68

ageostrophic secondary circulation. The secondary circulation acts to restratify the mixed layer, a69

tendency which is balanced by vertical mixing to leading order. The vertically-sheared cross-front70

flow associated with the secondary circulation and vertical mixing of temperature work together71

to spread the front via shear dispersion (Young et al. 1982; Taylor 1953). Shear dispersion acting72

on fronts was examined in Ferrari and Young (1997) and Crowe and Taylor (2018) for different73

mixing parameterizations.74

Young and Chen (1995) used the SML model to study baroclinic instability associated with75

horizontal heat and salt gradients. For simplicity only cases of very strong and very weak mixing76

were considered, with the strong mixing corresponding to a ‘slab’ mixed layer model with no77

vertical variation and the weak mixing corresponding to a geostrophically balanced mixed layer.78

They speculated that the classical Eady model of baroclinic instability (Eady 1949; Vallis 2006)79

5

10.1175/JPO-D-18-0270.1.



Accepted for publication in Journal of Physical Oceanography. DOI 

should be recovered in the limit of weak mixing. However, it was not possible to make this80

connection explicitly since there is no background vertical stratification in the SML model and81

the Richardson number is large (and hence stratification is strong) in the limit of small Rossby82

numbers in the Eady model.83

Crowe and Taylor (2018) considered the evolution of an isolated front subject to a depth-84

dependent turbulent viscosity and diffusivity - a simple vertical mixing parameterization intended85

to represent the effects of small-scale turbulence. The leading order momentum balance was found86

to be the so-called ‘turbulent thermal wind’ (TTW) balance (Gula et al. 2014) between the Cori-87

olis acceleration, the horizontal pressure gradient, and vertical mixing, with the resulting velocity88

depending linearly on the horizontal buoyancy gradient. As in the SML model, vertically-sheared89

cross-front flow leads to a re-stratification of the mixed layer, while shear dispersion leads to90

spreading of the front.91

Here, we take a different approach and use the vertical mixing scheme introduced by Young92

(1994) to consider mixed layer instabilities in the presence of vertical mixing. Unlike Young93

and Chen (1995) we use a single scalar, buoyancy, which simplifies the analysis for arbitrary94

mixing intensity. We also include a background vertical stratification to allow direct comparison95

with the Eady instability and we add horizontal viscous terms to examine the high wavenumber96

cutoff. While similar to the SML model, our asymptotic approach differs in that the buoyancy97

and momentum mixing timescales are assumed to be the same order, which leads to a different98

parameter regime. The parameter regime we use is the same as that considered in Crowe and99

Taylor (2018), although here the turbulent mixing is represented by relaxation towards the local100

depth-averaged profile rather than diffusion.101

In §2 we describe the governing equations and the asymptotic limit and discuss the differences102

between our approach and the approach use by Young (1994); Young and Chen (1995). In §3 we103
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give the asymptotic solution to the governing equations in terms of the background buoyancy field,104

b0, and horizontal streamfunction, ψ0. The governing equations for b0 and ψ0 are given in §4 and105

the instabilities of these equations are considered analytically in §5 and numerically in §6. In §7106

we use a quasi-geostrophic model to examine a mechanism that can control the fastest growing107

mode. Finally in §8 we discuss our results and the limitations of our model.108

2. Governing Equations109

We start with the 3D non-hydrostatic Boussinesq equations and consider a fluid bounded from110

above and below by flat, rigid boundaries in a coordinate system rotating about the vertical (z) axis.111

We invoke a linear equation of state and let the buoyancy, b, denote departures from a background112

stratification with buoyancy frequency N. We non-dimensionalize the governing equations using113

the horizontal length scale L, vertical length scale H, buoyancy scale ∆b, horizontal velocity scale114

U = ∆bH/( f L), vertical velocity scale W = UH/L = ∆bH2/( f L2), pressure scale P = fUL =115

∆bH, and timescale T = L/U = f L2/(H∆b). This leads to the non-dimensional parameters defined116

in Table 1.117

We follow Young (1994) and parameterize vertical mixing by adding a forcing term to the RHS118

of the momentum and buoyancy equations which acts to relax the velocity and buoyancy to the119

local depth-average. The rates of relaxation for buoyancy and velocity are µb and µu, respectively.120

This parameterization is chosen largely for mathematical convenience though it is not conspicu-121

ously less realistic than an eddy diffusivity parameterization. A similar analysis could be carried122

out with the vertical relaxation scheme replaced with a vertical viscosity and diffusivity. Although123

this complicates the analysis, qualitatively similar results can be obtained (see Appendix C).124

7
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With the choices described above, the non-dimensional governing equations are (Charney 1973;125

Young 1994; Crowe and Taylor 2018):126

Ro
Du
Dt
− v =−∂ p

∂x
+α (u−u) , (1a)

Ro
Dv
Dt

+u =−∂ p
∂y

+α (v− v) , (1b)

Roε
2 Dw

Dt
=−∂ p

∂ z
+b, (1c)

Ro
Db
Dt

+Buw =
α

Prα

(
b−b

)
, (1d)

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0, (1e)

where the material derivative is127

D
Dt

=
∂

∂ t
+u ·∇, (2)

and128

φ =
∫ 1/2

−1/2
φ dz (3)

denotes a depth average across the non-dimensional vertical domain z∈ [−1/2,1/2]. Note that we129

might expect the background stratification represented by Bu to be affected by vertical mixing. We130

instead assume that this stratification is maintained by a process that is not represented here and131

occurs on a different timescale to the mixing, such as symmetric instability or surface heating, so132

that the background stratification can be imposed as a constant. Note that a stable stratification will133

develop in response to mixing of momentum even if Bu = 0. Imposing an additional background134

stratification is mathematically convenient as it allows for a straightforward comparison with the135

Eady model in the limit of no vertical mixing.136

Our approach differs from Young (1994) where it was assumed that the ratio of the buoyancy137

mixing timescale to the advection timescale was small compared to one, but large compared to the138
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Rossby number, such that139

1/µb

T
=

RoPrα

α
� Ro. (4)

Since no assumptions are made about the size of α , this results in the requirement that Prα is140

large unless α is small. Motivated by simulations and experiments of turbulent mixing in weakly141

stratified flows, we instead assume that Prα = O(1) (e.g. Schumann and Gerz (1995); Venayag-142

amoorthy and Stretch (2010)). This choice of Prα allows us to consider the case where the mixing143

rates are similar for any value of α , although we are unable to solve the resulting equations to the144

same order in Ro as Young (1994).145

Before proceeding with the analysis, it is useful to relate our nondimensional parameters to146

physical quantities. We can relate the relaxation (mixing) rates, µu and µb, to a turbulent eddy147

turnover time by defining a characteristic turbulent velocity scale, u∗, and a characteristic length148

scale, l. The parameterized mixing rates, µu and µb, then scale with149

µu,µb ∼
u∗
l
. (5)

Therefore, the ratio of the mixing rate to the Coriolis frequency is150

α ∼ u∗
l f

. (6)

For wind-driven turbulence, the friction velocity provides a characteristic velocity scale such151

that u∗ =
√

τw/ρ0, where τw is the magnitude of the wind stress. In this case the turbulent length152

scale, l, characterizing the largest turbulent eddies would be the smaller of the mixed layer depth153

or the Ekman layer depth. On the other hand for convection an appropriate characteristic velocity154

scale is instead u∗ = w∗ = (B0l)1/3 where B0 is the surface buoyancy flux and l is the mixed layer155

(or convective layer) depth. Note that the relaxation ratio can be related to the Ekman number,156
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E = ν/( f l2), by invoking a mixing length argument where the turbulent viscosity, ν ∼ u∗l. Hence157

α ∼ u∗
l f
∼ ν

f l2 ∼ E. (7)

We can estimate some of the important parameters including the aspect ratio, Rossby number,158

and relaxation ratio from reported observations of fronts. We have selected three examples using159

observations reported in Mahadevan et al. (2012); Thompson et al. (2016); Thomas et al. (2013)160

which correspond to weak, moderate, and strong horizontal density gradients, respectively. Note161

that the values chosen from Mahadevan et al. (2012) correspond to the north/south density gradient162

characterizing the North Atlantic as observed during the North Atlantic Bloom Experiment, rather163

than individual fronts. The estimated parameter values are given in Table 2. Note also that the164

values are roughly representative of the observations, but the structure of the fronts are complicated165

and cannot be fully represented with a simple set of parameters. Nevertheless, the relatively weak166

north/south density gradient observed during the North Atlantic Bloom experiment (Mahadevan167

et al. 2012) and simulated by Mahadevan et al. (2012) and Taylor (2016) and the fronts reported168

in Thompson et al. (2016) have relatively small Rossby numbers using our definition. As we will169

show using comparisons with numerical simulations, aspects of our asymptotic theory are valid at170

these Rossby numbers. In contrast, the Rossby number associated with the Gulf Stream front is171

quite large and outside of the range of validity of our asymptotic theory. We note that it is possible172

to have α = O(1) for both strong and weak fronts and the aspect ratio, ε , is generally small for173

open ocean fronts.174

Note that our definition of Rossby number uses a length scale characteristic of the horizontal175

density gradient and not necessarily the resulting eddies. As a result, the Rossby number as defined176

here can be quite small in practice. If we instead define a Rossby number, Ros, using the length-177

scale of a baroclinic eddy, we have Ros =K Ro for nondimensional wavenumber K. In the analysis178
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that follows, we will show that K can be on the order of 100, and hence Ros = O(1) as typical of179

a submesoscale eddy. Therefore, even though the values of Ro used in our theory and simulations180

will be very small, our results are applicable to the formation of submesoscale structures where181

Ros ∼ 1.182

3. Asymptotic Solution183

In this section we will solve Eqns. (1a-1e) using an asymptotic method valid for small Rossby184

numbers. We begin by assuming that the aspect ratio is small and expand all variables in powers185

of Ro, e.g. b = b0 +Rob1 +Ro2b2 + . . .. We impose no conditions on the relaxation rate, α , and186

allow it to appear at leading order. We also assume that the stratification is weak with Bu=O(Ro),187

hence we write Bu = RoN 2 where188

N 2 = N2H/∆b, (8)

is the ratio of the vertical buoyancy difference (N2H) to the horizontal buoyancy difference (∆b).189

Here, for the purposes of the asymptotic equations we will assume that N 2 = O(1), although the190

result will be valid if N 2� 1. The time derivative is expanded into fast and slow timescales:191

∂

∂ t
→ ∂

∂ t
+

1
Ro

∂

∂τ
, (9)

for fast transient timescale, τ = t/Ro. The fast timescale, τ , represents the transient evolution192

from a general initial condition. In order to simplify the analysis we assume that all transients193

have decayed and hence neglect the τ derivatives. For completeness, the full solution including194

the transients is given in Appendix A.195

a. Order 1 Equations196

We now consider separately the O(1) and O(Ro) terms in the governing equations. With the197

assumption that Bu = O(Ro), the only term in the buoyancy equation that contributes to O(1) is198
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the parameterized vertical mixing term. Hence, the O(1) buoyancy balance is199

α

Prα

b′0 = 0, (10)

where (·)′ denotes a departure from the local depth-average. Eq. 10 implies that b0 is independent200

of depth. This is consistent with the limit of strong mixing leading to a well-mixed layer as also201

found by Young (1994).202

Similarly, the leading order balance in the momentum equations is203

−v0 =−
∂ p0

∂x
−αu′0, (11a)

u0 =−
∂ p0

∂y
−αv′0, (11b)

0 =−∂ p0

∂ z
+b0, (11c)

0 =
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂ z
. (11d)

Eq. 11c can be integrated to give p0 = zb0 + p0, and the depth-averaged horizontal momentum204

equations and mass conservation equation reduce to geostrophic balance for the depth-averaged205

flow:206

−v0 =−
∂ p0
∂x

, (12a)

u0 =−
∂ p0
∂y

, (12b)

0 =
∂u0

∂x
+

∂v0

∂y
. (12c)

Subtracting the depth-averaged horizontal momentum equations from equations 11 gives evolution207

equations for the horizontal velocity perturbations and vertical velocity208

αu′0− v′0 =−z
∂b0

∂x
, (13a)

αv′0 +u′0 =−z
∂b0

∂y
, (13b)

0 =
∂u′0
∂x

+
∂v′0
∂y

+
∂w0

∂ z
. (13c)

12
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Equations 13 can be combined to give209

u′H0 = γ [−α ∇Hb0 +k×∇Hb0]z, (14)

and210

w0 =
αγ(4z2−1)

8
∇

2
Hb0, (15)

where γ = 1/(1+α2). From the depth-averaged mass conservation equation we can write uH0 =211

−∇× (ψ0k) for streamfunction ψ0. From equations 12a and 12b we note that p0 = ψ0. Hence212

uH0 =−∇× (ψ0k)+ γ [−α ∇Hb0 +k×∇Hb0]z. (16)

As noted in Young (1994), the horizontal velocity has a non-zero vertical shear at leading order,213

unlike the buoyancy which is well-mixed at leading order. In the case of α = 0, the equation for214

uH0 reduces to thermal wind balance. For nonzero α , vertical mixing acts to couple the cross-215

front and along-front flows, leading to a flow with a component in the direction of the buoyancy216

gradient. For α < 1 stronger mixing results in a stronger cross-front shear, while the cross-front217

shear weakens with stronger mixing for α > 1.218

b. Order Ro Equations219

We now consider the O(Ro) terms in the buoyancy conservation equation. The advection of b0220

by the leading order velocity contributes to O(Ro). Since b0 = b0(x,y, t), the O(Ro) buoyancy221

equation is222

∂b0

∂ t
+uH0 ·∇Hb0 +N 2w0 =−

α

Prα

b′1. (17)

Subtracting the depth average gives223

α

Prα

b′1 =−u′H0 ·∇Hb0−N 2w′0, (18)

13
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which describes a balance between advection by the cross-front flow and vertical mixing. Hence224

the solution for b′1 is225

b′1 = Prαγ

[
z|∇Hb0|2−N 2 12z2−1

24
∇

2
Hb0

]
. (19)

Solving for b1 requires the O(Ro2) buoyancy equation. Note that even withN = 0, there is a stable226

vertical stratification at this order, consistent with the finding from Tandon and Garrett (1994) that227

the vertical buoyancy gradient is proportional to the horizontal buoyancy gradient squared.228

4. Evolution of the Background Fields229

In order to determine the time dependence of the system on the slow timescale, t, we need230

to determine governing equations for the depth independent functions b0 and ψ0. These can be231

obtained by depth averaging the buoyancy and vertical vorticity equations. The vertical vorticity232

equation is233

Ro
(

∂ζ

∂ t
+u ·∇ζ −ω ·∇w

)
+∇H ·uH = α(ζ −ζ ), (20)

for vertical vorticity ζ = ω ·k, which can be depth-averaged to give234

∂ζ

∂ t
+∇H · [uHζ −ωHw] = 0, (21)

or using depth-averaged and perturbation quantities,235

∂ζ

∂ t
+∇H · [uHζ −ωHw+u′Hζ ′−ω′Hw′] = 0. (22)

Similarly, the depth-averaged buoyancy equation is236

∂b
∂ t

+uH ·∇Hb+∇H · [u′Hb′]+N 2w = 0. (23)

We now use the leading order solutions for the velocity and buoyancy fields (ψ0 and b0) to write237

the depth-averaged equations in terms of these fields.238

14

10.1175/JPO-D-18-0270.1.



Accepted for publication in Journal of Physical Oceanography. DOI 

a. Buoyancy239

Substituting the expansions in Rossby number up to O(Ro) into Eq. 23 gives240

∂b0

∂ t
+uH0 ·∇Hb0 +N 2w0 +Ro

[
∂b1

∂ t
+uH1 ·∇Hb0 +uH0 ·∇Hb1 +N 2w1 +∇H · [u′H0b′1]

]
= 0.

(24)

Using the definition of ψ0, we can write uH0 ·∇Hb0 = J(ψ0,b0), where J is the Jacobian operator:241

J( f ,g) =
∂ f
∂x

∂g
∂y
− ∂ f

∂y
∂g
∂x

. (25)

We can also write the flux term as242

u′H0b′1 =
Prαγ2

12
(−α∇Hb0 +k×∇Hb0)|∇Hb0|2, (26)

and hence Eq. 24 can be written as243

∂b0

∂ t
+ J(ψ0,b0)+N 2w0 +Ro

[
∂b1

∂ t
+uH1 ·∇Hb0 +uH0 ·∇Hb1 +N 2w1

]
=

RoPrαγ2

12
∇H ·

[
(α∇Hb0−k×∇Hb0)|∇Hb0|2

]
.

(27)

The limit considered by Young (1994) uses Prα = P/
√

Ro with P = O(1). For Ro� 1 this244

corresponds to momentum relaxation that is much faster than the buoyancy relaxation. With this245

choice, and in the absence of background stratification (N2 = 0), the buoyancy evolution equation246

to order O(
√

Ro) can be written247

∂b0

∂ t
+ J(ψ0,b0) =

√
RoPγ2

12
∇H ·

[
(α∇Hb0−k×∇Hb0)|∇Hb0|2

]
. (28)

This result was obtained by Young (1994). The first term in brackets on the right hand side of Eq.248

28 is a down-gradient buoyancy flux. The second term is a ‘skew’ flux directed perpendicular to249

the buoyancy gradient. The role of the skew flux will be discussed in more detail in §4c.250

Here, we take a different approach from Young (1994) and assume that Prα = O(1) while re-251

taining a non-zero background stratification. The O(1) terms in Eq. 27 are then252

∂b0

∂ t
+ J(ψ0,b0) =

αγN 2

12
∇

2
Hb0, (29)

15
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where we have used w0 = −αγ
(
∇2

Hb0
)
/12. With this form for w0, vertical advection acting on253

the background stratification (N 2w0 in Eq. 27) acts like horizontal diffusion on the leading order254

buoyancy.255

Crowe and Taylor (2018, 2019) studied the evolution of a front in turbulent thermal wind bal-256

ance. A simple form of this problem can be obtained by considering a two-dimensional front with257

no y dependence and N 2 = 0. With these assumptions, Eq. 27 reduces to258

∂b0

∂ t
=

RoPrαγ2α

12
∂

∂x

(
∂b0

∂x

)3

, (30)

as b1 and uH1 can be assumed to be zero by symmetry. This equation describes frontal spreading259

on the timescale T = Ro t and can be solved with a similarity solution as in Crowe and Taylor260

(2018).261

b. Vorticity262

We can formulate a closed system of two equations for the leading order buoyancy, b0, and263

the leading order streamfunction, ψ0, using conservation of vorticity. The leading order vorticity264

equation is265

∂ζ 0
∂ t

+∇H · [uH0ζ 0−ωH0w0 +u′H0ζ ′0−ω′H0w′0] = 0, (31)

where each term can now be written in terms of b0 and ψ0. The leading order vertical vorticity is266

ζ0 =
∂v0

∂x
− ∂u0

∂y
= ∇

2
Hψ0 + γ z∇

2
Hb0. (32)

Since b0 is independent of z, and since z is anti-symmetric about the mid-plane (z = 0), the final267

term does not contribute to the depth-average, which leaves ζ 0 = ∇2
Hψ0. Advection of vorticity268

by the depth-averaged horizontal velocity can be written as269

∇H · [uH0ζ 0] = ∇H · [uH0∇
2
Hψ0] = J(ψ0,∇

2
Hψ0). (33)

16
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The horizontal vorticity is given by270

ωH0 =

 ∂w0
∂y −

∂v0
∂ z

∂u0
∂ z −

∂w0
∂x

 , (34)

and its depth-average is271

ωH0 =

 ∂w0
∂y −∆v0

∆u0− ∂w0
∂x

 , (35)

where ∆u0 and ∆v0 are the change in horizontal velocity between the top and bottom boundaries.272

The second flux term is273

∇H · [ωH0w0] = ∇H ·

1
2

 ∂w2
0

∂y

−∂w2
0

∂x

+

−∆v0 w0

∆u0 w0


= ∇H ·

−∆v0 w0

∆u0 w0

 , (36)

or274

∇H · [ωH0w0] =
αγ2

12
∇H ·

[
(∇Hb0 +α k×∇Hb0)∇

2
Hb0
]
. (37)

using the leading order velocities. The last two flux terms involving departures from the mean275

vorticity are276

∇H · [u′H0ζ ′0] =−
γ2

12
∇H ·

[
(α∇Hb0−k×∇Hb0)∇

2
Hb0
]
, (38)

and277

∇H · [ω′H0w′0] = ∇H ·

 1
2

∂

∂y [w
′2
0 ]−

∂v′0
∂ z w′0

−1
2

∂

∂x [w
′2
0 ]+

∂u′0
∂ z w′0

= ∇H ·

−∂v′0
∂ z w′0

∂u′0
∂ z w′0

= 0, (39)

since u′0 and v′0 are linear in z and w′ = 0. The terms in w′20 can be written as a curl and hence are278

divergence free.279

Combining these results, the vertical vorticity equation can be written280

∂∇2
Hψ0

∂ t
+ J(ψ0,∇

2
Hψ0) =

γ2

12
∇H ·

[(
2α∇Hb0 +(α2−1)k×∇Hb0

)
∇

2
Hb0
]
. (40)
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The left hand side of Eq. 40 corresponds to advection of vertical vorticity. The first term in brackets281

on the right hand side corresponds to a cross-front vorticity flux, and the second term in brackets282

corresponds to an along-front skew flux.283

c. The Skew Flux Term284

As mentioned earlier, a skew flux term appears in the evolution equation for b0 (the second285

term on the right hand side of Eq. 27). This term, Jb = −k×∇Hb0|∇Hb0|2, represents a flux of286

buoyancy perpendicular to the buoyancy gradient. As noted above, a skew flux also appears in the287

vertical vorticity equation (Eq. 40) which we will denote Jv = (k×∇Hb0)∇
2
Hb0.288

The divergence of the skew flux terms in the buoyancy and vorticity equations can be re-289

expressed in terms of advection operators. First, note that the divergence of the skew flux terms290

can be written as291

∇H ·Jb =−∇H ·
[
k×∇Hb0|∇Hb0|2

]
=−∇Hb0 ·

[
−k×∇H |∇Hb0|2

]
, (41)

and292

∇H ·Jv = ∇H ·
[
(k×∇Hb0)∇

2
Hb0
]
=−∇Hb0 ·

[
(k×∇H)∇

2
Hb0
]
. (42)

Therefore, the terms in brackets can be written in the form of advection operators with velocities293

ub =−k×∇H |∇Hb0|2 = ∇H×
[
|∇Hb0|2k

]
, (43)

and294

uv = (k×∇H)∇
2
Hb0 = ∇H×

[
−∇

2
Hb0k

]
. (44)

Therefore ub and uv can be written in terms of streamfunctions, χb = −|∇Hb0|2 and χv = ∇2
Hb0.295

In the buoyancy equation the skew flux term can be combined with the existing advection term,296

J(ψ0,b0). From the form of the streamfunction, χb, we see that the effect of the skew flux term,297
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Jb, is to advect buoyancy along the contours of |∇Hb0|2 = const. Equations 27 and 40 can then be298

written299

∂b0

∂ t
+ J

(
ψ0−

√
RoPγ2

12
|∇Hb0|2,b0

)
=

RoPrααγ2

12
∇H ·

[
∇Hb0|∇Hb0|2

]
+O(Ro), (45)

and300

∂∇2
Hψ0

∂ t
+ J(ψ0,∇

2
Hψ0)+

(α2−1)γ2

12
J(∇2

Hb0,b0) =
2αγ2

12
∇H ·

[
∇Hb0∇

2
Hb0
]
. (46)

Note that using Equation 45 with Prα = P/
√

Ro corresponds to the Young (1994) case. In the301

Prα = O(1) limit that we consider, only the vorticity skew flux term, Jv, enters the equations at302

leading order and the advection of buoyancy by the buoyancy skew flux term, Jb, is small.303

d. Horizontal Diffusion304

The system described by Eqns. 1a-1e parameterizes vertical mixing by relaxing the velocity and305

buoyancy fields towards their local depth average, but the equations do not include any parameteri-306

zation for horizontal mixing by small-scale turbulence. As will be shown below, the most unstable307

mode in this system has an infinite horizontal wavenumber or, equivalently, a vanishingly small308

wavelength. Fortunately, it is relatively straightforward to include a parameterization of horizontal309

mixing using horizontal Laplacian viscous and diffusive terms with viscosity ν and diffusivity κ .310

The addition of these terms shifts the most unstable mode to a finite wavenumber. Note that this311

Laplacian scheme differs from the relaxation parameterization used to represent vertical mixing312

and is used for mathematical convenience. Appendix C describes a model with Laplacian mixing313

schemes in the horizontal and vertical directions.314

With the addition of parameterized horizontal mixing, the terms ε2E∇4
Hψ0 and ε2E/PrE∇2

Hb0315

appear on the right hand sides of the depth-averaged vorticity and buoyancy equations, respec-316

tively, where recall that ε = H/L is the aspect ratio, E = ν/( f H2) is the Ekman number and317
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PrE = ν/κ is the Prandtl number. In most applications ε << 1 and these terms will be small.318

However, for very small Ro these terms might contribute significantly. Writing E = ε2E/Ro, the319

resulting equations are320

∂b0

∂ t
+ J(ψ0,b0) =

[
αγN 2

12
+
E

PrE

]
∇

2
Hb0, (47)

and321

∂∇2
Hψ0

∂ t
+ J(ψ0,∇

2
Hψ0)−E∇

4
Hψ0 =

γ2

12
∇H ·

[(
2α∇Hb0 +(α2−1)k×∇Hb0

)
∇

2
Hb0
]
, (48)

which are asymptotically valid if ε2E = O(Ro). For convenience, we will write the combined322

buoyancy diffusivity appearing in Eq. 47 as323

D =

[
αγN 2

12
+
E

PrE

]
. (49)

We note that these equations can be obtained from Young (1994) in the limit of fast buoyancy324

mixing (1/µb� L/U). However this result would only strictly be valid for small α based on the325

analysis in Young (1994) due to the use of different asymptotic limits, while here no constraints326

have been placed on the size of α .327

5. Instabilities of the Depth-Averaged Equations328

Equations 47 and 48 are a closed system of equations for the leading order buoyancy and vortic-329

ity. In this section, we will analyze the stability of these equations to small amplitude disturbances.330

For simplicity, we will consider perturbations about a basic state where buoyancy is a linear func-331

tion of x, i.e. b0 = Bx for a constant B, and where the vertical vorticity is zero. Introducing normal332

mode perturbations of the form exp[i(kx+ ly)+σt], the total buoyancy and vorticity can be written333

using an eigenmode decomposition,334

(b0,ψ0) = (δAexp[i(kx+ ly)+σt]+Bx,δC exp[i(kx+ ly)+σt]) , (50)
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for wavevector (k, l), growth rate σ and small parameter δ . The vector (A,C) is the eigenvector of335

the resulting linear system.336

To leading order in δ , the linearized buoyancy and vorticity equations can be written337

σA− ilBC =−(k2 + l2)DA, (51)

and338

−σ(k2 + l2)C =
γ2

12
[
−2αik(k2 + l2)− (α2−1)il(k2 + l2)

]
BA+(k2 + l2)2EC, (52)

or in the form of a single matrix equation,339  σ +(k2 + l2)D −lB

γ2

12

[
2αk+(α2−1)l

]
B σ +(k2 + l2)E


A

iC

= 0. (53)

For this equation to be valid for some non-zero vector (A, iC), the determinant of this matrix must340

vanish. Therefore341

[σ +(k2 + l2)D][σ +(k2 + l2)E ]+ γ2B2

12
[
2αkl +(α2−1)l2]= 0. (54)

The solution to this equation for the growth rate, σ , is342

σ±=−
D+E

2
(k2 + l2)±

√[
D−E

2

]2

(k2 + l2)2−B2 [2αkl +(α2−1)l2], (55)

where B2 = γ2B2/12 is a re-scaled buoyancy gradient and the parameters343

D =
α γ Bu
12Ro

+
E

PrE
, E = ε2E

Ro
, (56)

can be written in terms of the non-dimensional numbers defined in Table 1. The growth rate has a344

maximum at a finite wavevector (k, l). Note that in the case where D = E (e.g. with N 2 = 0 and345

PrE = 1), the growth rate simplifies to346

σ± =−E(k2 + l2)±B
√
− [2αkl +(α2−1)l2]. (57)
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To find the maximum growth rate in the more general case, it is useful to define a rotated wavevec-347

tor, l′ = Rα l, where l = (k, l) and the rotation matrix,348

Rα =
1√

1+α2

 1 α

−α 1

 , (58)

is orthogonal with determinant 1 corresponding to a rotation by θ = −arctanα . The growth rate349

in rotated coordinates becomes350

σ± =−D+E
2

(k′2 + l′2)±

√[
D−E

2

]2

(k′2 + l′2)2 +B2 [l′2−α2k′2]. (59)

For a fixed wavelength, the growth rate in Eq. 59 is maximum for (k′, l′) = (0,±K), corresponding351

to waves aligned at an angle of arctanα to the down-front (y) direction. We note that the fastest352

growing modes therefore have a wavevector aligned with the horizontal velocity at the top and353

bottom boundaries. The same is true for the the classical Eady instability where the wavenumber354

of the fastest growing modes is in the down-front direction (Eady 1949; Vallis 2006), but here355

the cross-front flow changes the orientation of the growing modes with respect to the front. The356

maximum growth rate over all directions as a function of the wavenumber is therefore357

σmax(K) =−D+E
2

K2 +

√[
D−E

2

]2

K4 +B2K2. (60)

Maximizing over K, the most unstable mode has a growth rate358

max
K

[σmax] =
B2

(
√
D+
√
E)2

, (61)

which reduces to maxK[σmax] = B2/(4D) in the case D = E . Therefore the most unstable359

wavenumber, Kmax satisfies360

K2
max =

−2DE+
√
DE(D+E)2

DE(D−E)2 B2, (62)

which reduces to361

K2
max =

B2

4D2 , (63)
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in the case D = E .362

As noted above, the horizontal viscous/diffusion terms are necessary to produce a finite363

wavenumber maximum since K2
max → ∞ as E → 0. Therefore, the system without horizontal364

viscosity and diffusion appears to produce an ‘ultraviolet catastrophe’. However, the maximum365

growth rate in this case does remain bounded since σmax asymptotes to B2/D for large K2.366

The case of D = 0 and E 6= 0 corresponds to no stratification and an infinite Prandtl number. By367

symmetry in E and D this case is the same as the E = 0 case though with different eigenvectors.368

When both E and D are zero, corresponding to no stratification and no horizontal diffusion, we369

have370

σmax(K) = BK, (64)

so the growth rate is unbounded and waves with infinite wavenumber will grow infinitely quickly.371

The case of α = 0 corresponds to the small wavenumber (long wave) limit of the classical Eady372

problem, where the growth rate is373

σEady =
Bl
µ

[(
coth

µ

2
− µ

2

)(
µ

2
− tanh

µ

2

)]1/2
, (65)

for scaled wavenumber µ2 = Bu l2 (Vallis 2006). Since we consider Bu = O(Ro), the relevant374

limit is the small µ limit in which case σEady reduces to375

σEady ∼
Bl√
12

= BK, (66)

consistent with Eq. 64. Note that this result is independent of the background buoyancy gradient376

represented by Bu. This result is also consistent with the small K limit of ageostrophic baroclinic377

instability considered by Stone (1966).378

As noted earlier, the direction of the most unstable modes described by Eq. 59 corresponds to379

k′ = 0. In non-rotated coordinates this corresponds to k =−αl, where k is the wavenumber in the380

cross-front direction and l is the wavenumber in the along-front direction. In contrast, the most381
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unstable modes in the inviscid Eady problem have k = 0 and hence correspond to the limit of382

α → 0.383

Instead, the modes perpendicular to the most unstable modes have l = αk in non-rotated coordi-384

nates. For these modes, the coefficient multiplying B2 inside the square root in Eq. 59 is negative.385

If E = D, σ± is purely imaginary for these modes, corresponding to traveling waves with a con-386

stant amplitude. Note, however, that the neglected higher order terms could add a real part to387

this growth rate and hence cause these perturbations to grow, while adding horizontal friction and388

diffusion will cause them to slowly decay with faster decay at higher wavenumbers.389

Figure 1 shows the real and imaginary parts of σ± in the case of no horizontal friction and390

diffusion or background stratification (D = E = 0). Only the σ+ branch produces growing modes391

with the fastest growth occurring for large K along the line k =−αl. Figure 2 shows the real and392

imaginary parts of σ± with E = D = 2.5× 10−3, corresponding to large horizontal friction and393

diffusivity or small Rossby number. A maximum in the growth rate can be seen on the plot of394

Re[σ+] for Kmax = 92.4 along the line k =−αl.395

We anticipate that the ‘ultraviolet catastrophe’ in the system without horizontal mixing will be396

cured by finite Rossby number effects. Equations 45 and 46 contain terms that are O(Ro) which397

were neglected in equations 47 and 48. These terms involve an extra power of the horizontal398

wavenumber magnitude, K, compared to the leading order terms. Therefore, the neglect of these399

terms is asymptotically valid when K � O(1/Ro). For sufficiently large K the neglected O(Ro)400

terms will become important and modify the growth rate, possibly resulting in a maximum growth401

rate at a lower wavenumber than predicted in Eq. 62 when the Rossby number is not infinitesimally402

small. This will be discussed further in §7.403
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6. Numerical Simulations404

To test the theory described above, we have conducted a series of fully nonlinear numerical sim-405

ulations using the code DIABLO. The code solves the incompressible non-hydrostatic Boussinesq406

equations. Time stepping is performed with a combination of explicit third-order Runge-Kutta and407

implicit Crank Nicolson schemes while finite differences are used for derivatives in the vertical di-408

rection and discrete Fourier transforms, using the pseudo-spectral method for non-linear terms, are409

used for derivatives in the horizontal direction (Taylor 2008).410

The simulations solve the non-dimensional equations where x, y, and z are normalized by the411

size of the computational domain such that the non-dimensional domain size is Lx = Ly = Lz = 1.412

The boundary conditions in the vertical direction are no stress, no buoyancy flux and no vertical413

velocity on the top and bottom surfaces. Periodic boundary conditions are applied to the velocity414

in both horizontal directions (see below for buoyancy).415

For numerical stability, viscous terms of the form416

D(u,v) = E
(

∂ 2

∂ z2 + ε
2
∇

2
H

)
(u,v), (67)

417

Dw = ε
2E
(

∂ 2

∂ z2 + ε
2
∇

2
H

)
w, (68)

and418

Db =
E

PrE

(
∂ 2

∂ z2 + ε
2
∇

2
H

)
b, (69)

are added to the horizontal momentum, vertical momentum and buoyancy equations respectively.419

The simulations use a small Ekman number, E, and a small aspect ratio, ε , such that the dominant420

vertical mixing process is the relaxation to the depth-average. The simulations are initialized with421

the solution given in Appendix B with vertical diffusion and relaxation. For the small Ekman422

numbers considered here this solution exhibits thin boundary layers where vertical diffusion is423

important. Outside of these boundary layers, the velocity and buoyancy fields correspond to the424
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solution given in §3. The initial velocity field is set to the leading order solution while the initial425

buoyancy field is prescribed to be a linear horizontal background gradient plus the resulting O(Ro)426

correction.427

Periodic boundary conditions are inconsistent with the initial conditions for buoyancy which428

have a constant horizontal buoyancy gradient. To overcome this, we decompose the total buoyancy429

into a background term with a constant buoyancy gradient and departures from this gradient, i.e.430

b = Bx+bp, (70)

where B is constant. This form is inserted into the buoyancy equation, and periodic boundary431

conditions are applied to bp. This has the effect of fixing the change in buoyancy across the432

domain in the x direction. A similar approach has been used in a number of previous studies (e.g.433

Taylor and Ferrari (2011); Taylor (2016)).434

Small amplitude normal mode perturbations are then added the buoyancy and streamfunction of435

the form436

b′0 =R

[
∑
(k,l)

Akl exp[i(kx+ ly+φkl)]

]
, (71)

and437

ψ
′
0 =R

[
∑
(k,l)

Ckl exp[i(kx+ ly+φkl)]

]
, (72)

where φkl is a random phase,R[ f ] denotes the real part of f and (k, l)= 2π(nk,nl) for nk,l = 1,2, . . .438

and n2
k +n2

l < N2
max describing a disc in phase space of radius 2πNmax.439

Note that the leading order depth-dependent velocity depends on b0 and hence the velocity440

perturbation can be found from b′0, while perturbations to the depth-independent velocity are in-441

troduced through ψ ′0. Similarly, the leading order depth-dependent buoyancy, b1, depends on b0442

and therefore perturbations to b1 are introduced through b′0. In the simulations, we set the ampli-443

tudes |Akl|= |Ckl|= 10−12 which ensure an interval of linear perturbation growth, while the phase444

26

10.1175/JPO-D-18-0270.1.



Accepted for publication in Journal of Physical Oceanography. DOI 

difference between Akl and Ckl is randomized. We use a background buoyancy gradient of B = 2445

such that b =±1 at x =±0.5.446

There are several non-dimensional parameters in the system described here. For simplicity, the447

numerical simulations are conducted for fixed Burger number, Prandtl number, aspect ratio, and448

Ekman numbers, with Bu = 0, Prα = PrE = 1, ε = 0.05 and E = 10−4. The Rossby number,449

Ro, and relaxation ratio, α , are varied over the set of values Ro ∈ {10−4,10−3,10−2,10−1} and450

α ∈ {0,0.2,0.4,0.6,0.8,1}. Each simulation is run until growing modes develop and transition to451

a nonlinear state.452

a. Description453

First, we compare the linear instabilities captured by the numerical simulations with the pre-454

dictions from the theory outlined above. We find that for sufficiently small Rossby numbers, the455

predicted angles of the instability and growth rates closely match the analytical predictions. This456

is perhaps not surprising since the theory is developed in the limit of asymptotically small Rossby457

number. However, by comparing the simulations and theory, we can quantify how large the Rossby458

number can be before the analytical theory breaks down.459

Figure 3 illustrates the development and nonlinear breakdown of the unstable modes from a460

simulation with Ro = 10−3 and α = 0.4. Here, the depth-averaged buoyancy field is plotted,461

where the background buoyancy gradient, B, has been removed. For reference, the unperturbed462

basic state is b = Bx, which would have vertical buoyancy contours in this figure. At a relatively463

early time (t = 0.314, upper right panel), growing perturbations develop with a distinctive angle464

with respect to the buoyancy gradient. Note that the fastest growing modes occur on a larger scale465

compared to the initial perturbations, suggesting a scale-selective process. By t = 0.384 (lower466

left panel) the flow transitions to a nonlinear regime and the growing perturbations roll up into467
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coherent vortices. These vortices then merge resulting in an energy cascade to larger scales (see468

lower right panel).469

Figure 4 shows two simulations with different values of α during the period when the perturba-470

tions are linear and the growth is exponential. The theoretical prediction for the direction of the471

fastest growing modes, k = −αl, is plotted as a black dashed line. As predicted, the wave crests472

of the most unstable modes are nearly perpendicular to the predicted wavenumber vector.473

Figure 5 shows the buoyancy perturbation from four simulations with different values of the474

Rossby number. In all cases, α = 0.4, and hence the predicted angle of the most unstable modes475

is the same. The wavelength of the most unstable modes changes with Ro, but interestingly the476

dependence is not monotonic. For the range of Ro tested, the shortest waves are observed for477

Ro = 10−3. For Ro = 10−4− 10−2 the direction of the wavevector is independent of Ro and478

closely matches the theoretical prediction.479

In the case with the largest Rossby number, Ro = 0.1, the fastest growing mode does not fit480

in the domain, and instead a quantized mode with (k, l) = (0,2π) appears. There also appear to481

be growing perturbations at an angle nearly perpendicular to the analytical prediction of k =−αl.482

These modes might be an indication of symmetric instability modified by vertical mixing, although483

this is not captured by our theory and we do not focus on it here.484

b. Energetics485

To describe the dynamics of the unstable modes, it is useful to diagnose the perturbation energy486

budgets. To start, we define the horizontal domain average to be487

〈 f 〉=
∫ 0.5

−0.5

∫ 0.5

−0.5
f dxdy, (73)
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and let f̃ = f −〈 f 〉 denote the departure from the horizontal average. The nondimensional energy488

equation can be derived from the governing equations and written in conservative form as489

Ro
∂K
∂ t

+∇ · [(RoK+ p)u]−bw =−α
(
uu′+ vv′

)
, (74)

for kinetic energy density490

K =
1
2
(
u2 + v2 + ε

2w2) , (75)

assuming that the diffusive terms are small. We now consider the perturbation kinetic energy,491

e =
1
2
〈
ũ2 + ṽ2 + ε

2w̃2〉 , (76)

and using Eq. 74 and the horizontally averaged governing equations, the perturbation energy bud-492

get can be written493

Ro

∂e
∂ t

+ 〈w〉∂e
∂ z

+ 〈ũw̃〉∂ 〈u〉
∂ z

+ 〈ṽw̃〉∂ 〈v〉
∂ z︸ ︷︷ ︸

S

+
1
2

∂

∂ z

〈
[ũ2 + ṽ2 + ε

2w̃2]w̃
〉

︸ ︷︷ ︸
T

=

− ∂

∂ z
〈p̃w̃〉︸ ︷︷ ︸
P

+〈b̃w̃〉︸︷︷︸
B

−α
〈
ũ′ũ+ ṽ′ṽ

〉︸ ︷︷ ︸
R

.

(77)

The terms in Eq. 77 can be interpreted as S: production of perturbation kinetic energy by the mean494

shear, T : turbulent transport, P: pressure transport, B: buoyancy flux, and R: dissipation by the495

parameterized vertical mixing. From mass conservation ∂ 〈w〉/∂ z = 0 and hence 〈w〉= const. and496

using the vertical boundary conditions we have that 〈w〉 = 0. We can now vertically average Eq.497

77 to remove the transport terms. The resulting equation for the domain averaged perturbation498

kinetic energy is499

Ro
∂e
∂ t

= S+F +R. (78)

The depth-averaged dissipation associated with the vertical relaxation term is given by500

R=−α

[
〈ũ′2〉+ 〈ṽ′2〉

]
=−α

[
〈ũ2〉+ 〈ṽ2〉−

〈
ũ2
〉
−
〈

ṽ2
〉]

, (79)
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which is negative by the Cauchy-Schwarz inequality. We now calculate the four terms in Eq. 78501

using our numerical data and consider the energy balance in order to determine the energy source502

and mechanism for the instability.503

Figure 6 shows the four terms in Eq. 78 for four different values of (Ro,α). Clear regions of504

exponential growth (with constant slope on the semi-log plot) develop in each case. When α = 0,505

corresponding to the classical Eady model, we can see that the dominant energy balance is between506

the time rate of change in kinetic energy and the buoyancy flux, representing the transformation507

of perturbation potential energy into perturbation kinetic energy and indicative of baroclinic in-508

stability. For nonzero α , the dominant balance is between the buoyancy flux and the dissipation509

associated with the vertical relaxation term, with the residual corresponding to the time rate of510

change of kinetic energy. Therefore, in the presence of vertical mixing, the instability is driven511

by a transfer of potential energy from the buoyancy field consistent with baroclinic instability,512

although most of the energy extracted from the potential energy reservoir is dissipated through513

the vertical mixing (relaxation) term. We note that the balance between F and R is closer for514

smaller Ro which is consistent with the asymptotic theory. Once the instability reaches the non-515

linear phase, the neglected viscous dissipation term becomes significant due to the appearance of516

small scale vortices.517

c. Growth Rate518

In this section, we diagnose the growth rate of the unstable perturbations from the numerical519

simulations and compare these with the prediction from the analytical theory. We define the growth520

rate of perturbations captured in the numerical simulations by521

σN =
1
2e

de
dt

. (80)
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This can then be compared with the theoretical growth rate, σ , given by the eigenmode decompo-522

sition in Eq. 50. We now define σavg(t1, t2) to be the average of σN in the time interval [t1, t2] and523

σrms(t1, t2) to be the RMS deviation from this average. Specifically,524

σavg(t1, t2) =
1

t2− t1

∫ t2

t1
σN(t)dt, (81)

and525

σrms(t1, t1) =
[

1
t2− t1

∫ t2

t1
[σN(t)−σavg(t1, t2)]

2 dt
]1/2

. (82)

We define the interval of exponential growth to be the largest time interval in which the ratio of526

σrms to σavg is below a specified tolerance, i.e. σrms/σavg < δ . The value of the growth rate is then527

taken to be σavg within the region of exponential growth. We use a tolerance of δ = 0.01 and do528

not define a growth rate if the region of exponential growth is small or σN is strongly oscillatory.529

We also use 2D discrete Fourier transforms to determine the wavevector of the fastest growing530

modes in each simulation.531

As an illustration of this procedure, Figure 7 shows σN diagnosed from four simulations with532

different values of Ro and α . For large Ro, large oscillations in σN prevent us from accurately533

diagnosing the growth rate for α > 0.6. Figure 8 shows the growth rate and wavenumber of the534

fastest growing modes diagnosed in this way for each simulation. We exclude results for large Ro535

and α where we are unable to accurately diagnose the growth rate. For Ro = 0.1 the dominant536

mode is (k, l) = (0,2π) which is likely not the fastest growing mode due to the restrictions of the537

domain size. For small Rossby number, the wavenumber of the fastest growing mode depends538

on α while for Ro ≥ 10−3 it is independent of α . This is an indication that there are different539

processes controlling the most unstable modes for small and large Ro.540

Figure 9 shows the 2D Fourier transform of the depth-averaged buoyancy perturbation for sev-541

eral values of Ro and α . When viscous effects are included the wavenumber associated with the542
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most unstable mode is given by 63 and can be written as543

Kmax =
RoB√

48(1+α2)ε2E
, (83)

by taking PrE = 1 and Bu = 0. The dependence of Kmax on α matches the simulations for544

Ro = 10−4 (see Figure 8). The circles on Figure 9 have radius given by Eq. 83 and we can see545

that the numerical results match the predictions of fastest growing wavenumber for Ro = 10−4.546

However, for larger Ro the fastest growing wavenumber is significantly smaller than the theoret-547

ical prediction. It appears that there is a second, α independent effect which controls the fastest548

growing modes and is not captured by the theory. This will be examined further in §7. Note from549

Eq. 83 that Kmax depends on the aspect ratio, ε , when viscous effects set the scale of the most550

unstable mode. However, as seen in Figure 8, the scale of the most unstable mode for Ro > 10−3
551

appears to be independent of viscosity (and independent of the aspect ratio).552

Along the direction k = −αl, the growth rate is given by Eq. 60. For Bu = 0 and PrE = 1, the553

growth rate of the most unstable mode given in Eq. 60 can be written554

σmax =
BK√

12(1+α2)
− ε2EK2

Ro
. (84)

Figure 10 shows a comparison between the growth rates predicted by Eq. 84 (left panel) and555

the growth rates diagnosed from the numerical simulations (right panel) where the wavenumber556

corresponding to the most unstable mode as diagnosed in the numerical simulations is used to set K557

in Eq. 84. There is very good agreement between the growth rates from the theory and simulations558

across a wide range of Rossby numbers and relaxation ratios. Interestingly, the growth rates match559

reasonably well even in cases where the most unstable wavenumber in the theory (Eq. 83) doesn’t560

match the most unstable wavenumber diagnosed in the simulations (e.g. the cases in the bottom561

panels of Figure 9).562
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7. QG analysis of a stratified basic state563

The numerical simulations described above indicate that the wavenumber of the most unstable564

mode is set by a process other than viscosity for the larger values of Ro. In this section we565

use the quasi-geostrophic (QG) equations to examine the stability of a depth-dependent basic566

state associated with vertical mixing of momentum and buoyancy. Specifically the velocity and567

buoyancy of the basic state will be given by Eqns. 16 and 19. Importantly, here the stratification of568

the basic state is non-zero and is the result of a balance between cross-front advection and vertical569

mixing. Since the stratification in Eq. 19 appears at O(Ro), it did not appear in the basic state570

analyzed in §5. Here, we also assume that departures from the basic state are not directly affected571

by vertical or horizontal mixing. This allows us to isolate the influence of vertical mixing on the572

background flow from its influence on the growing perturbations.573

The total velocity and buoyancy fields can be written as574

(u,v,w,b) =
(
U + û,V + v̂, ŵ,Bx+N2z+ b̂

)
, (85)

where capital letters denote the basic state and ·̂ denotes a perturbation to the basic state. The575

nondimensional QG equation can be written576 [
∂ 2

∂x2 +
∂ 2

∂y2 +
1

Ro
∂

∂ z

(
1

N2
∂

∂ z

)]
ψ̂ = 0, (86)

where the streamfunction satisfies û=−∂ψ̂/∂y and v̂= ∂ψ̂/∂x. Applying the boundary condition577

w = 0 at z =±1/2 to the buoyancy equation gives578 [
∂ 2

∂ t∂ z
+U

∂ 2

∂x∂ z
+V

∂ 2

∂y∂ z
−B

∂

∂y

]
ψ̂ = 0, (87)

where the nondimensional buoyancy perturbation is b̂ = ∂ψ̂/∂ z using the QG approximation.579

From Eqns. 16 and 19 we now write580

(U,V,N2) =
(
−αγBz, γBz, RoPrαγB2) , (88)
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and note that N2 describes the stratification that results from the balance between cross-front ad-581

vection and vertical mixing. Eq. 86 has solutions of the form582

ψ̂ = [Asinhκz+C coshκz]eikx+ily+σt , (89)

for κ =
√

RoN2(k2 + l2) and following Vallis (2006) we Eq. 87 to determine a linear system for583

(A,C). The requirement that the determinant of this system vanishes determines the growth rate,584

which can be written585

σ
2 =

B2

κ2

[
γ(l−αk)

κ

2
− l tanh

κ

2

][
l coth

κ

2
− γ(l−αk)

κ

2

]
. (90)

We note that this result reduces to the classical Eady result (Eady 1949) for α = 0. Working in our586

rotated coordinate system (k′, l′), we can show that σ is maximal for k =−αl where587

σ
2 =

γB2

RoN2

[
κ

2
− tanh

κ

2

][
coth

κ

2
− κ

2

]
. (91)

Therefore, following Eady (1949) and Vallis (2006), we have maximum growth rate588

σmax =
0.31B√

Ro(1+α2)N
, (92)

for most unstable wavenumber589

Kmax =
1.6√
RoN

. (93)

Using N2 from Eq. 88 this result becomes590

σmax =
0.31

Ro
√

Prα

, (94)

and591

Kmax =
1.6
√

1+α2

Ro
√

Prα B
. (95)

Therefore the most unstable mode is set by the interaction of edge waves, moderated by the strat-592

ification that develops in response to vertical mixing of momentum. Since this stratification is an593
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O(Ro) term in the buoyancy equation, it does not appear in the leading order evolution equations594

for b0 or ψ0 (equations 47 and 48), and hence its influence on the unstable modes is not captured595

by our asymptotic model.596

The QG predictions for σmax and Kmax are shown in Figure 11 as functions of α and Ro. Com-597

paring these results with Figure 8 we find that they provide reasonably accurate predictions for the598

growth rate and wavenumber for Ro > 10−3 where the scale is not set by horizontal diffusion and599

the wavenumber of the most unstable mode decreases with increasing Ro. However, the growth600

rate from the QG analysis (Eq. 94) is less accurate than the prediction from the asymptotic theory601

(Eq. 84) when compared with the numerical simulations. For example, the growth rate in Eq. 94602

is independent of α , while the prediction in 84 and the growth rate diagnosed from the simula-603

tions decrease with increasing α . This suggests that vertical mixing acts to damp the perturbations604

and reduces their growth rate. Nevertheless, the estimate from Eq. 94 still provides a reasonable605

approximation to the growth rate.606

We expect the mixing-induced stratification to limit the size of the most unstable modes when it607

would give a smaller value of Kmax than horizontal diffusion. Using Eq. 83, this occurs when608

RoB√
48(1+α2)ε2E

>
1.6
√

1+α2

Ro
√

Prα B
. (96)

Therefore the mixing-induced stratification will be important when609

Ro >
3.3(1+α2)3/4 ε E1/2

Pr1/4
α B

. (97)

For the parameters used in our numerical simulations (specifically ε = 0.05 and E = 10−4), this610

condition is satisfied for Ro& 10−3, consistent with our observations that the fastest growing mode611

is not set by horizontal diffusion for this parameter range. We note that using a turbulent Ekman612

number scaling of E ∼ u∗/ f H for turbulent velocity u∗ and mixed layer depth H can give values613

of E on the order of 10−2−1. Therefore in a highly turbulent mixed layer, a diffusive cutoff may614
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be possible for Rossby numbers up to about Ro ∼ 0.1. Mathematically, this can help us explain615

the apparent inaccuracy of our original prediction for the fastest growing mode. Since a very small616

value of ε2E was used in our simulations, the horizontal mixing terms were smaller than any terms617

describing the O(Ro) stratification, N2, even for small values of Ro. Our theory assumes that these618

horizontal mixing terms are dominant and hence we have discrepancies for much smaller values of619

Ro than might be anticipated. If we were to instead use a much larger value of E for our numerical620

simulations, representative of a turbulent Ekman number, we would find agreement over a much621

wider range of Ro as described by Eq. 97. It is also worth re-emphasizing that the lengthscale622

used to define Ro is the horizontal domain size in the simulations. Since the most unstable mode623

is typically much smaller than the domain size (see Fig. 3), the scale-dependent Rossby number624

associated with the size of the most unstable mode will be much larger than Ro.625

The angle of the most unstable mode from the QG analysis agrees with the theory in §5 and626

the simulations. Therefore, we can conclude that the orientation of the most unstable modes are627

primarily set by the background flow and is not strongly influenced by the effects of vertical mixing628

acting directly on the perturbations.629

For small K the growth rate from the QG analysis (Eq. 90) becomes630

σ ∼ BK√
12(1+α2)Bu

, (98)

for Bu = RoN2. This does not have the same α dependence as Eq. 64, although we note that both631

expressions reduce to the classical Eady case for α = 0. This discrepancy is likely because the QG632

approach does not consider the action of vertical mixing on the perturbations.633

The analysis of the instability using the QG equations also provides insight into the relative ac-634

curacy of growth rate from the analytical theory. In the absence of horizontal mixing, the analytical635

theory predicted that the growth rate is a linearly proportional to the horizontal wavenumber (see636

36

10.1175/JPO-D-18-0270.1.



Accepted for publication in Journal of Physical Oceanography. DOI 

Eq. 64). As shown in Eq. 98, the growth rate in the QG analysis also increases linearly with K for637

small values of K, while stratification decouples the Eady edge waves and suppresses the growth638

rate for large K. However, the maximum growth rate in the QG analysis is relatively close to the639

value that would be obtained by using the wavenumber of the fastest growing mode in Eq. 98,640

which has the same form as the theory in §5. We expect that the true growth rate for the problem641

admits both a viscous cutoff and a decoupled edge wave cutoff and reduces to the analytical result642

for small K. If the maximum growth rate in the case of decoupled edge waves is close to the linear,643

small K region (as is the case in the QG model) then the analytical theory would well describe the644

growth rate even though it does not capture the cutoff mechanism. This may explain why our645

growth rate predictions in Figure 10 closely match the numerical simulations.646

Note that the Richardson number of this system can be shown to be Ri = Prα hence it would be647

more accurate to use the ageostrophic analysis of Stone (1966). This analysis can be performed648

using the background state in Eq. 88, although it is much more complicated than the QG analysis.649

Including non-QG effects reduces the growth rate of the most unstable mode (σmax) by a factor of650

√
1+Ri and it somewhat reduces the wavenumber of the most unstable mode (Kmax). Importantly,651

the dependence of σmax and Kmax on Ro and α are unchanged by the inclusion of non-QG effects,652

and hence we use the QG equations here for simplicity.653

Recall from figure 3 that modes with l = αk appeared in the simulation with Ro = 0.1 which654

were perpendicular to the anticipated most unstable mode. Setting l = αk in the QG analysis gives655

σ
2 =−B2l2

κ2 . (99)

These modes are stable and correspond to travelling waves. Therefore, the perpendicular modes656

observed in Figure 5 do not appear to arise through QG dynamics, and are likely associated with657

finite Ro effects which we have not considered here.658
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Finally, we note that a similar QG analysis could be carried out for the TTW system with vertical659

mixing parameterized using a Laplacian viscosity and diffusivity, as described in Appendix C.660

However, in this case Eq. 86 would have to be solved numerically since N2 depends on z.661

8. Conclusions and Discussion662

Here, we examined baroclinic instability in the presence of vertical mixing, where mixing is663

parameterized using a simple relaxation towards the local depth average. A theory was developed664

which is valid in the limit of small Rossby number, but arbitrary mixing rates. In the limit of no665

mixing we recover the long wave limit of baroclinic instability in the Eady model. Vertical mixing666

reduces the growth rate and tilts the unstable modes such that they are aligned with the horizontal667

velocity, with the angle determined by the relaxation timescale.668

In the absence of horizontal mixing and a turbulent Prandtl number of 1, the growth rate associ-669

ated with the fastest growing modes (from Eq. 61 with B = 1) is670

σ =
Ro

α (1+α2)Bu
, (100)

where σ is nondimensionalised by 1/T = HM2/( f L), H is the mixed layer depth, L is a char-671

acteristic horizontal length scale, M2 is the horizontal buoyancy gradient, and f is the Coriolis672

parameter. The nondimensional parameters in Eq. 100 are the Rossby number, Ro = M2H/( f 2L),673

the Burger number, Bu = N2H2/( f 2L2), where N is the buoyancy frequency associated with a sta-674

ble background stratification, and the mixing ratio, α = µ/ f , where µ is the vertical mixing rate.675

Note that the horizontal length scale, L, characterizes the width of the front and not necessarily676

the size of the unstable modes. Indeed, Figure 8 shows that the non-dimensional wavenumber of677

the most unstable modes is K >> 1 and therefore the scale-dependent Rossby number associated678

with the growing perturbations will be significantly larger than Ro.679
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The theoretical growth rate in Eq. 100 decreases with decreasing Ro (e.g. for weak horizon-680

tal buoyancy gradients) and decreases with increasing vertical mixing rate. In the absence of a681

background stratification (Bu = 0) the growth rate is unbounded. However, when a horizontal682

Laplacian viscosity and diffusivity is included to parameterize horizontal mixing, the growth rate683

is bounded and equal to684

σ =
Ro

12(1+α2)
2
[√

ε2E+
√

ε2E+ α Bu
12(1+α2)

]2 , (101)

where E = ν/( f H2) is the Ekman number, ν is the horizontal viscosity (equal to the diffusivity685

since the Prandtl number is assumed to be 1) and H is the mixed layer depth.686

The theory developed here is valid for asymptotically small Rossby numbers (although the ver-687

tical mixing rate can be large). To test the range of validity of the theory, we conducted a series688

of numerical simulations. The growth rate and wavenumbers predicted by the theory match those689

diagnosed from the simulations very closely for small Rossby numbers. The predicted growth690

rate matches the simulations for Rossby numbers up to O(0.1). However for Ro > O(10−3), the691

most unstable modes in the simulations are significantly larger than those predicted from the the-692

ory. This implies that in this range of Ro, the neglected higher order terms become important and693

provide a scale selecting mechanism.694

To investigate this further, we used the quasi-geostrophic (QG) equations to analyze the stability695

of a depth-dependent basic state. Here the density of the basic state was set through a balance696

between cross-front advection and vertical mixing. Since the stratification that results from this697

balance appears at O(Ro) it was not included in the theory described earlier. We also neglected698

the direct influence of vertical mixing on the perturbations when applying the QG equations. Re-699

sults from the QG analysis show that the horizontal orientation of the fastest growing modes is700

largely inherited from the orientation of the background flow. The QG analysis also shows that the701
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stratification that develops from the cross-front flow can decouple the Eady edge waves, thereby702

providing a high wavenumber cutoff. Although this effect was not included in the theory presented703

in §5, the growth rate predicted from our theory agrees well with the growth rate diagnosed from704

the numerical simulations, even in parts of parameter space where the most unstable wavenumber705

is not set by a viscous cutoff.706

Motivated by this, we can combine the predicted growth rate from our theory with the high707

wavenumber cutoff from the QG analysis. To put the results in the context of typical ocean con-708

ditions, it is useful to normalize the growth rate by f and write it as a function of |∇b|/ f 2, which709

has the effect of eliminating the dependence of the growth rate on the aspect ratio. In the case710

with Bu = 0, PrE = 1, and a non-dimensional horizontal buoyancy gradient B = 1, the growth rate711

given in Eq. 84 can be written712

σ

f
=

KRo√
12(1+α2)

− f 4

|∇b|2
EK2Ro2. (102)

When the size of the most unstable mode is limited by horizontal mixing,713

KRo =
|∇b|2√

48 f 4(1+α2)E
, (103)

and when it is limited by the influence of mixing-induced stratification on the interaction between714

Eady edge waves,715

KRo = 1.6
√

1+α2. (104)

When vertical and horizontal mixing are described using the same characteristic turbulent velocity716

u∗ and length scale, l, we have α ∼ E∼ u∗/( f l) (see Eq. 7).717

Figure 12 shows the growth rate prediction from Eq. 102 with E = α , and KRo set by the718

minimum of Eqns. 103 and 104. The dashed line separates regions where the most unstable mode719

is controlled by horizontal mixing through Eq. 103 (the region below the line) and mixing-induced720

stratification through Eq. 104 (the region above the line). The symbols show typical parameters721
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corresponding to winter and summer conditions based on the observations reported in Thompson722

et al. (2016). In the winter when submesoscale activity was clearly observed, the size of the most723

unstable mode is limited by mixing-induced stratification and the growth rate from Eq. 102 is close724

to the inviscid prediction from Stone (1966). However, for parameters more typical of conditions725

during summer, Figure 12 suggests that mixing associated with small-scale turbulence can limit726

the size and dramatically reduce the growth rate of the unstable modes. This result might help727

explain the apparent absence of submesoscale activity in the summer months.728

For the inviscid Eady problem (here with α = 0), the dominant source of energy for the growing729

baroclinic modes is the buoyancy flux. Here, we find that for relatively large mixing rates, the730

dominant energy balance is between the buoyancy flux and the dissipation associated with ver-731

tical mixing, with the small residual corresponding to the kinetic energy growth. Therefore the732

instability is driven by a transfer of potential energy to the growing perturbations, consistent with733

baroclinic instability, although now most of the energy is dissipated by vertical mixing, which acts734

to reduce the growth rate of the unstable modes.735

For larger values of α and Ro, the numerical simulations show evidence of small scale modes736

with l = αk that are perpendicular to the predicted direction. These might be associated with the737

skew flux term in the leading order buoyancy equation (Eq. 27) which cannot be neglected for large738

Ro and acts to destabilize modes with l = αk. The energy budget suggests that these modes have739

a different energy source involving both the buoyancy flux and the shear production. These modes740

have not been studied in detail here since our theory is not valid for this range of parameters.741

As noted above, the growth rate of the most unstable mode predicted from our theory matches the742

numerical simulations up to a Rossby number of about 0.1. This range includes many open ocean743

fronts. For example, based on a year-long timeseries from the OSMOSIS campaign, Thompson744

et al. (2016) found that the strongest fronts observed had |∇b| ∼ 10−7s−2. For mixed layer depths745
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in the range 20−200m and a horizontal scale between 20km, this corresponds to a Rossby number746

ranging from 0.01− 0.1. Stronger and/or sharper fronts such as the Gulf Stream (Thomas et al.747

2013) are likely to be strongly influenced by the relatively large Rossby numbers characterizing748

these fronts, and our results might not be applicable.749

The turbulent thermal wind (TTW) model considered in Wenegrat and McPhaden (2016);750

McWilliams (2016); Crowe and Taylor (2018) used a large turbulent Ekman number instead of751

relaxation to represent mixed layer turbulence. As shown in Appendix C, the TTW model is also752

susceptible to the instability described here, and we expect that any turbulence parametrization in753

which the leading order velocity is linear in the buoyancy gradient will exhibit the same instability.754

We have approached the stability problem by seeking analytical solutions to the asymptotic755

equations which are valid for small Rossby numbers. Another approach would be to solve the756

linearized equations numerically, without making any assumptions about the size of the Rossby757

number. This could be viewed as an extension to Stone (1970) and Stamper and Taylor (2017) with758

the addition of vertical mixing. This would permit non-geostrophic processes such as symmetric759

instability which are not included in the limit of small Ro.760

Here, we have assumed that the relaxation ratio, α is constant which effectively prescribes the761

vertical mixing rate. This allows us to isolate and study the influence of vertical mixing on mixed762

layer instabilities, but the assumption of constant α does not allow the instabilities to modify the763

vertical mixing rate. Previous studies (e.g. Taylor and Ferrari 2011; Taylor 2016) have found that764

the stable stratification induced by baroclinic and symmetric instability significantly reduces the765

rate of vertical mixing. We speculate that a reduction in α would enhance the growth rate of the766

unstable modes, providing a positive feedback mechanism. This hypothesis could be tested in767

future work.768
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APPENDIX A773

Transient Solution774

In §3 we calculated the asymptotic solution for u0, b0 and b′1 for the long time evolution. Here we775

include the transient evolution on the timescale τ for an initial flow with arbitrary vertical structure776

(e.g. thermal wind flow). Again the leading order buoyancy is assumed to be depth independent but777

we allow the buoyancy deviation, b′1, to have arbitrary initial vertical structure. This setup allows778

us to initialize the flow in thermal wind balance with a depth independent buoyancy, the transient779

evolution causes the front to slump over and the velocity to develop a cross-front component.780

a. Order 1 Equations781

The leading order buoyancy balance is782

∂b0

∂τ
+

α

Prα

b′0 = 0, (A1)

so we take solution with b0 to be depth independent and hence independent of τ , therefore b0 =783

b0(x,y, t).784
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The leading order velocity balance is given by785

∂u0

∂τ
− v0 =−

∂ p0

∂x
−αu′0, (A2a)

∂v0

∂τ
+u0 =−

∂ p0

∂y
−αv′0, (A2b)

0 =−∂ p0

∂ z
+b0, (A2c)

∂u0

∂x
+

∂v0

∂y
+

∂w0

∂ z
= 0, (A2d)

hence the pressure can be written as786

p0 = zb0 + p0, (A3)

and the horizontal momentum equations and mass conservation equation can be depth averaged to787

give788

∂u0

∂τ
− v0 =−

∂ p0
∂x

, (A4a)

∂v0

∂τ
+u0 =−

∂ p0
∂y

, (A4b)

∂u0

∂x
+

∂v0

∂y
= 0. (A4c)

Subtracting the depth-averaged horizontal momentum equations from equations A2 gives evolu-789

tion equations for the horizontal velocity perturbations and vertical velocity790 [
∂

∂τ
+α

]
u′0− v′0 =−z

∂b0

∂x
, (A5a)[

∂

∂τ
+α

]
v′0 +u′0 =−z

∂b0

∂y
, (A5b)

∂u′0
∂x

+
∂v′0
∂y

+
∂w0

∂ z
= 0. (A5c)

Equations A5 can be solved to get791

u′H0 = A1(z,τ)∇Hb0 +A2(z,τ)k×∇Hb0, (A6)
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and792

w0 = A3(z,τ)∇2
Hb0. (A7)

where793

A1 =
−αz

1+α2 +

[
A0

1(z)+
αz

1+α2

]
e−ατ cosτ +

[
A0

2(z)−
z

1+α2

]
e−ατ sinτ, (A8a)

A2 =
z

1+α2 +

[
A0

2(z)−
z

1+α2

]
e−ατ cosτ−

[
A0

1(z)+
αz

1+α2

]
e−ατ sinτ, (A8b)

A3 =
α(z2− 1

4)

2(1+α2)
− e−ατ cosτ

∫ z

−1/2
A0

1(z
′)+

αz′

1+α2 dz′− e−ατ sinτ

∫ z

−1/2
A0

2(z
′)− z′

1+α2 dz′,

(A8c)

where (A0
1,A

0
2) describes the initial horizontal flow. Once the transients have decayed the balanced794

solutions are795

u′H0 = γ [−α ∇Hb0 +k×∇Hb0]z, (A9)

and796

w0 =
αγ(4z2−1)

8
∇

2
Hb0, (A10)

for γ = 1/(1+α2). From the depth-averaged mass conservation equation we can write797

uH0 =−∇× (ψ0k), (A11)

for streamfunction ψ0 = p0. Hence798

uH0 =−∇× (ψ0k)+A1(z,τ)∇Hb0 +A2(z,τ)k×∇Hb0. (A12)

b. Order Ro Equations799

The O(Ro) buoyancy equation is800

∂b1

∂τ
+

∂b0

∂ t
+uH0 ·∇Hb0 +N 2w0 =−

α

Prα

b′1, (A13)
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and subtracting the depth average gives801 [
∂

∂τ
+

α

Prα

]
b′1 =−u′H0 ·∇Hb0−N 2w′0. (A14)

When N 2 = 0 the general solution is given by802

b′1 = A4(z,τ)|∇Hb0|2, (A15)

where803

A4 =
Prαz

1+α2 +

A0
4(z)−

Prαz
1+α2 +

[
A0

1(z)+
αz

1+α2

]
α

(
1− 1

Prα

)
+
[
A0

2(z)−
z

1+α2

]
1+α2

(
1− 1

Prα

)2

e−
α

Prα τ

+


[
A0

1(z)+
αz

1+α2

](
sinτ−α

(
1− 1

Prα

)
cosτ

)
−
[
A0

2(z)−
z

1+α2

](
cosτ +α

(
1− 1

Prα

)
sinτ

)
1+α2

(
1− 1

Prα

)2

e−ατ ,

(A16)

for initial vertical structure described by A0
4(z). The general steady state solution is given by804

b′1 = Prαγ

[
z|∇Hb0|2−N 2 12z2−1

24
∇

2
Hb0

]
, (A17)

and calculating b1 requires the O(Ro2) buoyancy equation.805

APPENDIX B806

Analytic Solution with Relaxation and Diffusion807

If we include vertical diffusion in the leading order velocity balance by taking E = O(1), we can808

obtain the solution809

u′H0 =−
√

E [B1∇Hb0 +B2 k×∇Hb0] , (B1)

where810

B1 = αζ/(1+α
2)+ iC1 sinh[

√
α + iζ ]− iC2 sinh[

√
α− iζ ], (B2a)

B2 =−ζ/(1+α
2)+C1 sinh[

√
α + iζ ]+C2 sinh[

√
α− iζ ], (B2b)
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and811

ζ = z/
√

E. (B3)

Using boundary conditions of no vertical shear on the top and bottom surfaces gives that812 i
√

α + icosh
[√

α+i
4E

]
−i
√

α− icosh
[√

α−i
4E

]
√

α + icosh
[√

α+i
4E

] √
α− icosh

[√
α−i
4E

]

C1

C2

=
1

1+α2

−α

1

 , (B4)

which can be inverted to obtain solution813 C1

C2

=
1

2(1+α2)

 1+αi√
α+icoshζα+

1−αi√
α−icoshζα−

 , (B5)

for814

ζα± =

√
α± i
4E

=
√

α± iζ0, (B6)

and
√
∗ denoting the principle value of the square root with branch cut taken along the line z ∈815

−IR+
0 . The leading order vertical velocity can be obtained by integrating the mass conservation816

equation as before which gives solution817

w0 =E
[

α2−1
(α2 +1)2+

α(ζ 2−ζ 2
0 )

2(1+α2)
+

iC1√
α + i

cosh[
√

α + iζ ]− iC2√
α− i

cosh[
√

α− iζ ]
]

∇
2
Hb0, (B7)

for ζ0 = 1/2
√

E.818

We can now use this leading order solution for the velocity to calculate the O(Ro) solution for819

the buoyancy perturbation, the governing equation is820

u′H0 ·∇Hb0 =
E
Pr

∂ 2b′1
∂ z2 −

α

Pr
b′1, (B8)

hence821 [
∂ 2

∂ζ 2 −α

]
b′1 =−

√
EPrB1 |∇Hb0|2, (B9)

which has solution822

b′1 =−
√

EPrB2 |∇Hb0|2. (B10)
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For small E this solution reduces to the solution given above in the region away from the bound-823

aries. We use this solution to initialize the numerical simulations so that the initial state matches824

the no stress boundary conditions and hence will not produce inertial waves while adjusting to a825

balanced state.826

APPENDIX C827

Instability in the viscous TTW model828

In this section, we analyze the stability of the the Turbulent Thermal Wind (TTW) model used829

in Crowe and Taylor (2018) where vertical mixing is parameterized by a Laplacian viscosity and830

diffusivity. We also include a background streamfunction, ψ0. The Steady state solution is831

uH =−∇× (ψ0k)−
√

E
(
K′′0 ∇Hb0 +K0k×∇Hb0

)
+O(Ro), (C1)

832

w = EK′0∇
2
Hb0 +O(Ro), (C2)

and833

b = b0−RoPr
√

EK0|∇Hb0|2 +O(Ro2), (C3)

where K0 and its derivatives are given in Crowe and Taylor (2018). Note that this model does not834

include a stratification so Bu= 0 and we are using an order 1 Ekman number to describe the effects835

of turbulence. Here we have used a constant vertical turbulent viscosity and diffusivity profile, this836

is just for convenience and the resulting equations will be similar for arbitrary vertical profiles.837

Using the depth-averaged buoyancy and vorticity equations, equations 23 and 40, and includ-838

ing horizontal diffusion we can write the governing equations for the background buoyancy and839

streamfunction as840

∂b0

∂ t
+ J(ψ0,b0) =

ε2E
RoPr

∇
2
Hb0, (C4)
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and841

∂∇2
Hψ0

∂ t
+ J(ψ0,∇

2
Hψ0)−

ε2E
Ro

∇
4
Hψ0 =

E∇H ·
[(

2K′20 ∇Hb0 +
[
K′′20 −K2

0

]
k×∇Hb0

)
∇

2
Hb0

]
.

(C5)

Note that the right hand side of Eq. C4 can be related to the diabatic PV flux (Thomas 2005;842

Wenegrat et al. 2018). These equations are of the same form as the governing equations for the843

relaxation model considered above hence we expect instabilities with the corresponding growth844

rate845

σ± =− ε2E
2Ro

[
1+

1
Pr

]
(k2 + l2)±√[

1
Pr
−1
]2

ε4E2

4Ro2 (k
2 + l2)2−EB2

[
2K′20 kl +(K′′20 −K2

0 )l
2
]
,

(C6)

for frontal gradient B and horizontal wavevector (k, l). In the case Pr = 1 this simplifies to846

σ± =−ε2E
Ro

(k2 + l2)±
√
−EB2

[
2K′20 kl +(K′′20 −K2

0 )l
2
]
. (C7)

The last term in square brackets in equations C6 and C7 is a symmetric quadratic form so can be847

diagonalized by an orthogonal transformation. Therefore the fastest growing modes for a given848

wavenumber will be tilted with angle dependent only on a function of the Ekman number. The849

fastest growing mode for a given wavenumber, K =
√

k2 + l2, is850

σ± =− ε2E
2Ro

[
1+

1
Pr

]
K2 +

√[
1
Pr
−1
]2

ε4E2

4Ro2 K4 +λEB2K2, (C8)

for eigenvalue851

λ =−1
2

[
K′′20 −K2

0 −
√

4K′20
2
+
(

K′′20 −K2
0

)2
]
, (C9)

with angle852

θ = arctan

K′′20 −K2
0 +

√
4K′20

2
+
(

K′′20 −K2
0

)2

2K′20
2

 , (C10)
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from the down-front direction.853

In the case Pr = 1 the maximum growth rate reduces to854

σmax =
√

λEBK− ε2EK2

Ro
, (C11)

which is the analogous result to Eq. 84 and has fastest growing mode855

Kmax =

√
λ BRo

2ε2
√

E
, (C12)

with corresponding growth rate856

σ(Kmax) =
λB2Ro

4ε2 . (C13)

Figure C1 shows the formation of baroclinic instability for α = 0, E = 0.1 and Ro = 0.01. We857

can see that the evolution and structure of the instability is similar to the case of the relaxation858

parametrisation with modes tilted by the angled TTW flow.859
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Parameter Symbol Definition

Rossby Number Ro ε∆b/ f 2L

Relaxation Ratio α µu/ f

Prandtl Number (α) Prα µu/µb

Aspect Ratio ε H/L

Burger Number Bu N2H2/ f 2L2

TABLE 1: Definitions of the dimensionless parameters and their values for buoyancy difference,
∆b, Coriolis parameter, f , background stratification, N2, horizontal lengthscale, L, vertical length-
scale, H, and momentum and buoyancy relaxation rates, µu and µb.
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Mahadevan et al. Thompson et al. Thompson et al. Thomas et al.

Parameter Symbol (N. Atl., spring) (N. Atl., summer) (N. Atl., winter) (Gulf Stream, winter)

Mixed layer depth H (m) 300 20 200 100

Coriolis parameter f (s−1) 1.3×10−4 1.1×10−4 1.1×10−4 9.0×10−5

Horiz. buoyancy grad. |∇b|(s−2) 7×10−9 10−8 10−7 10−7

Horizontal scale L(km) 300 5 15 10

Turbulent velocity u∗ (m s−1) 10−2 10−2 2×10−2 2×10−2

Aspect ratio ε 10−3 4×10−3 10−2 10−2

Rossby number Ro = |∇b|
f 2 ε 10−3 4×10−3 0.1 0.5

Relaxation ratio α = u∗
f H 0.3 5 1 1

TABLE 2: Estimates of physical scales and nondimensional parameters for three open ocean fronts
as estimated based on observations reported in Mahadevan et al. (2012); Thompson et al. (2016);
Thomas et al. (2013).
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Fig. C1. The formation of baroclinic instability for E = 0.1 and Ro = 0.01. We plot b0(x,y,z =999

0)−Bx as a function of cross-front coordinate x and along-front coordinate y. . . . . . 721000
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FIG. 1: Real and imaginary parts of the growth rate σ±, predicted from the theory for E =D = 0
and B2 = 0.213 corresponding to α = 0.5 and B = 2. The black lines are k =−αl and the white
lines are l = αk. Note that the top and bottom rows have different color bars.
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FIG. 2: The real and imaginary parts of the growth rate, σ±, predicted from the theory for E =
D= 2.5×10−3 and B2 = 0.213 corresponding to α = 0.5 and B = 2. The black lines are k =−αl
and the white lines are l = αk.
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FIG. 3: Depth-averaged buoyancy perturbation, b(x,y)−Bx from a nonlinear numerical simulation
with Ro = 10−3 and α = 0.4 at several times as indicated. The formation of the linear instability
and the transition to nonlinear instability can be seen.
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FIG. 4: Depth-averaged buoyancy perturbation, b(x,y)−Bx from numerical simulations with α =
0.4 and α = 1. In both cases Ro = 10−3 and the fields are shown at time t = 0.314. The black
lines show the predicted wavevector direction, k =−αl, which should be perpendicular to lines of
constant phase.
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FIG. 5: Depth-averaged buoyancy perturbation, b(x,y)−Bx for α = 0.4 and several Rossby num-
bers during the phase of linear perturbation growth in several numerical simulations. For Ro = 0.1
growing modes appear which are perpendicular to those predicted by the analytical theory, indi-
cating a breakdown of the theory due to the relatively large Rossby number.
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FIG. 6: The magnitude of terms in the volume-averaged energy budget from numerical simulations
for several values of Rossby numbers and α . The terms are as given in Eqs. 77 and 78, specif-
ically, the shear production is denoted S, buoyancy flux, F , and dissipation via vertical mixing
(relaxation),R. The case of α = 0 corresponds to the classical Eady model.
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FIG. 7: Perturbation growth rate, σN , diagnosed from the numerical simulations for a range of
Rossby numbers, Ro and relaxation ratios, α . The dashed lines show the interval of exponential
growth and the average value of σN within this region.

66

10.1175/JPO-D-18-0270.1.



Accepted for publication in Journal of Physical Oceanography. DOI 

0 0.2 0.4 0.6 0.8 1
-4

-3.5

-3

-2.5

-2

-1.5

L
o

g
 R

o
K for Fastest Growing Mode

20

40

60

80

100

120

140

160

180

200

0 0.2 0.4 0.6 0.8 1
-4

-3.5

-3

-2.5

-2

-1.5

N
 for Fastest Growing Mode

10

20

30

40

50

60

70

80

90

FIG. 8: Perturbation growth rate, σN , and the wavenumber, K =
√
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mode inferred from the numerical simulations as functions of Ro and α .
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turbation, b(x,y)−Bx, calculated form the numerical simulations for a range of Ro and α . The
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FIG. 10: Perturbation growth rate, σ , diagnosed from the numerical simulations (σN) and the
maximum growth rate predicted from the theory (σmax).
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FIG. 11: Wavenumber and growth rate of the most unstable mode from the QG analysis (Eqs. 94
and 95) as functions of Ro and α .
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FIG. 12: Predicted growth rate of the most unstable modes from Eq. 102 where the wavenumber
is set by the smaller of Eq. 103 and 104. The dashed line separates regions where the wavenumber
is set by Eq. 103 (below the line) from regions where the wavenumber is set by Eq. 104 (above
the line). The symbols indicate typical parameters from the OSMOSIS survey as reported in
Thompson et al. (2016) in the winter and summer (see Table 2 for values).
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Fig. C1: The formation of baroclinic instability for E = 0.1 and Ro = 0.01. We plot b0(x,y,z =
0)−Bx as a function of cross-front coordinate x and along-front coordinate y.

72

10.1175/JPO-D-18-0270.1.




