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Here, we examine the influence of small-scale turbulence on the evolution of fronts in
the ocean and atmosphere. Specifically, we consider the evolution of an initially balanced
density front subject to an imposed viscosity and diffusivity as a simple analogue for
small-scale turbulence. At late times, the dominant balance is found to be the quasi-
steady turbulent thermal wind balance with time-evolution due to an advection-diffusion
balance in the buoyancy equation. We use the leading order balance to determine
analytical similarity solutions for the spreading of a front and find that the spreading
rate is maximum for an intermediate value of the Ekman number with the spreading
resulting from shear dispersion associated with the cross-front flow and vertical diffusion
of density. In response to shear dispersion, the front evolves towards a density profile
that is nearly linear in the cross-front coordinate. At the edges of the frontal zone, the
density field develops large curvature and these regions are associated with narrow bands
of intense vertical velocity.

1. Introduction

Fronts, or regions with large horizontal density gradients, are common and important
features in the atmosphere and ocean. Atmospheric fronts are associated with weather
patterns on both the local (Ostdiek & Blumen 1997) and the continental (Hoskins 1982)
scale and coincide with strong winds and updrafts. Similarly, fronts in the upper ocean
can enhance the vertical transport of tracers such as heat and nutrients (Garrett & Loder
1981; Ferrari 2011).

Fronts develop and intensify through a process known as frontogenesis (Hoskins 1982).
This phenomenon occurs in both the atmosphere and oceans and can be driven by a
variety of processes including externally imposed strain, surface heat flux, wind stress
and adjustment from an unbalanced initial state (Hoskins & Bretherton 1972; Blumen
2000). Large scale fronts in the ocean and atmosphere are often close to a state of thermal
wind balance, i.e the balance between a pressure gradient in hydrostatic balance with
changes in density and the Coriolis force associated with an along-front jet (Holton &
Hakim 2012; Rudnick & Luyten 1996). When a balanced front is disturbed (for example
by turbulent mixing, large-scale flow, or surface stress), the dynamic response results
in a secondary circulation with flow in the cross-front and vertical directions (Eliassen
1962; Hoskins & Bretherton 1972; Orlanski & Ross 1977). The horizontal convergence
associated with the secondary circulation further intensifies frontogenesis (Hoskins &
Bretherton 1972).

Inviscid analytic solutions for fronts subject to an imposed convergent strain flow can
develop singularities in finite time (Hoskins & Bretherton 1972). These infinitely sharp
fronts are not observed physically, suggesting the existence of a process controlling frontal
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width. One candidate for arresting frontogenesis is mixing of density and momentum by
small scale turbulence (McWilliams 2016; Sullivan & McWilliams 2018).

The evolution of a front in response to frictional forcing was considered by Thompson
(2000) who used a two-dimensonal semi-geostrophic model modified to include vertical
mixing. Constant diffusivity and viscosity were used to represent turbulent effects in
the ocean surface mixed layer. A cross-front ageostrophic flow proportional to the
horizontal buoyancy gradient led to a slumping of the frontal region and the formation
of a sharp surface buoyancy gradient. In the case where vertical diffusion was small
a buoyancy balance between time evolution and cross-front advection was considered
giving an equation for the non-linear evolution of the surface buoyancy. The solution
evolved towards a finite-time discontinuity as with the inviscid case and gave a good
approximation to the frontal sharpening before the singularity was reached.

Early theoretical work by Garrett & Loder (1981) considered an idealised model of a
front for two-layer and continuous stratification. For a continuously stratified front with
small Ekman number it was assumed that the along-front velocity satisfies thermal wind
balance allowing the cross-front velocity to be approximated using an eddy viscosity
acting on the thermal wind flow. Using the equation for density advection and neglecting
eddy diffusivity, a diffusion equation with variable horizontal diffusivity was found for
the depth of isopycnals outside of the surface Ekman layer.

Later Young (1994) derived the subinertial mixed layer (SML) approximation using
a simple vertical mixing parametrisation which assumed that quantities evolve towards
their depth averaged values at a rate linearly proportional to their departure from this
depth average. Separate timescales for vertical mixing and inertia were considered and
analytic solutions were given in terms of their ratio under the assumption of small Rossby
number. In the case of fast momentum mixing, the temperature and salinity were found to
satisfy nonlinear advection-diffusion equations with an effective diffusivity proportional to
the square of the buoyancy gradient. In this case, the effective diffusivity was due to shear
dispersion associated with a vertically-sheared cross-front flow and vertical diffusion.

In the limit of rapid mixing, the dominant balance in the SML approximation is
between the hydrostatic pressure gradient, the Coriolis force and the vertical mixing
of momentum. This quasi-steady balance, recently termed the ‘Turbulent thermal wind’
(TTW) or ‘generalised Ekman’ has been seen in models and observations of ocean fronts
(Cronin & Kessler 2009; Taylor & Ferrari 2010; Gula et al. 2014; McWilliams et al. 2015;
Wenegrat & McPhaden 2016) where the vertical momentum fluxes are associated with
small-scale turbulence. As we will show, TTW balance arises as the small-Ro and small-
aspect-ratio limit, corresponding to a shallow strongly rotating flow, as described earlier
by Charney (1973).

McWilliams (2017) extended the previous analysis by combining the generalised non-
linear TTW equations with an Omega equation (ΩE) to construct a diagnostic framework
to analyze the frontogenetic tendency and secondary circulation for fronts and filaments.
For a given buoyancy field, the velocity fields were decomposed into TTW and ΩE
components and an iterative procedure was used to numerically converge to the diagnostic
secondary circulation. This procedure allowed the velocity field to be diagnosed for an
imposed buoyancy field, boundary conditions and an externally imposed strain flow.
By diagnosing the time-tendency, McWilliams (2017) showed that the ageostrophic
secondary circulation associated with TTW balance could drive frontogenesis. While this
analysis allowed the diagnosis of the instantaneous time tendency, it did not examine the
temporal evolution of the front.

Other recent studies have examined the evolution of submesoscale filaments in TTW
balance using numerical simulations with parameterized (McWilliams et al. 2015) and
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partially-resolved (Sullivan & McWilliams 2018) turbulence. These studies found that
the TTW circulation is associated with convergent surface flow and downwelling along
the centre of the filament. This induces frontogenesis which is eventually arrested by
small-scale turbulence (Sullivan & McWilliams 2018).

Our objective is to develop a theoretical description of the evolution of a front in TTW
balance. This can be viewed as an extension to the diagnostic analysis by McWilliams
(2017), although we restrict our analysis to small Rossby numbers where TTW balance
holds. However, our analysis does extend to large Ekman numbers, and in this way
our study can be viewed as a generalisation of the Garrett & Loder (1981) model.
For simplicity, we represent small-scale turbulence through prescribed viscosity and
diffusivity which are allowed to vary in depth but are assumed to be independent of
time and both horizontal directions.

We find that frontogenesis, or intensification of the surface density gradient, occurs
during a brief transient ‘adjustment’ period. After this transient period, we find that the
front spreads through shear dispersion associated with the vertical diffusivity and the
vertically-sheared cross-front velocity, as described by Young (1994). Here, our focus will
be on the spreading regime, rather than the frontogenetic regime, conditions for which
were examined in detail in McWilliams (2017). In a region of frontogenesis the cross
front length scales can become small corresponding to an order-one Rossby number and
advection by the secondary circulation at leading order; we instead consider an unforced
front with no sharp surface gradients in which the horizontal length scale can be taken
as the frontal width and the resulting Rossby number is small.

Further, we find that when the viscosity and diffusivity are sufficiently large, the front
spreads through shear dispersion associated with the vertical diffusivity and the vertical
shear of the cross-front velocity, a process also described by Young (1994) in the context of
the SML equations. Further, we find that the density evolves towards a self-similar profile,
with the density being an approximately piecewise linear function of the cross-front
distance with a relatively constant density gradient inside the front and large curvature at
the edges of the front. The vertical velocity is intensified in the regions of large curvature
at the edges of the front, consistent with the instantaneous TTW balance associated with
the self-similar density profile.

In §2 we describe the problem setup and our approach to finding a solution using an
expansion in Rossby number and a multiple time scale analysis. In §3.1 - §3.3 we consider
the balances at O(1), O(Ro) and O(Ro2) which we find to be sufficient to determine
a solution to leading order in velocity and first order in buoyancy. We find that the
governing equation for the depth-averaged buoyancy can be solved using a similarity
solution which we calculate in §3.5. Analytic solutions for velocity and buoyancy are
found in terms of vertical structure functions. These can be solved for analytically for
simple turbulence parametrisations while numerical solutions are required in general.
Finally in §4 we discuss our results and future work.

2. Problem Setup

We will consider an idealised frontal geometry consisting of an incompressible fluid
bounded from above and below by rigid horizontal surfaces in a reference frame rotating
about the vertical (z) axis. The fluid density varies continuously across a single isolated
front. This geometry is a canonical configuration for studies of frontal dynamics (e.g.
Hoskins & Bretherton (1972); Blumen (2000)). For simplicity, we neglect the horizontal
component of the rotation vector, the so-called ‘traditional approximation’ (Salmon
1998).
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We will assume that density changes can be represented by a single scalar equation,
invoking a linear equation of state, and that variations in density are small compared
with a reference value, invoking the Boussinesq approximation. We will let b ≡ −gρ′/ρ0
denote the fluid buoyancy, where ρ0 is a constant reference density, ρ′ denotes departures
from ρ0 and ρ′ << ρ0.

We will consider the response of an initially balanced front to an imposed viscosity ν
and diffusivity κ which we assume to depend only on the depth, z. It should be noted
that, while ν and κ will be assumed to be constant in time, our primary motivation is
to study the influence of small-scale turbulence on the evolution of the front. By using a
time-independent ν and κ, we are able to isolate the influence of a turbulent viscosity and
diffusivity on the evolution of the front, without allowing the feedback associated with
the front to alter the properties of small-scale turbulence. This assumption is artificial
but greatly simplifies the analysis. When considering constant ν and κ (as in Thompson
(2000)), the setup can also be viewed as a laboratory-scale analogue with molecular ν
and κ.

We can non-dimensionalise the governing equations using a horizontal length scale
L, vertical length scale H and buoyancy scale ∆b, with the horizontal velocity scale
U = ∆bH/(fL), vertical velocity scale W = UH/L = ∆bH2/(fL2), pressure scale
P = fUL = ∆bH and timescale T = L/U = fL2/(H∆b) for Coriolis parameter f . We
define the Rossby number, Ro = U/(fL), using the geostrophic shear, U/H = ∂b/∂x/f =
∆b/(fL) and write the aspect ratio, H/L, as ε. The Ekman number and Prantl number
are defined in terms of the depth averaged dimensional viscosity and diffusivity, ν and
κ, as E = ν/(fH2) and Pr = ν/κ. This gives the following non-dimensional equations
(Charney 1973):

Ro
Du

Dt
− v = −∂p

∂x
+ E∇ε · (ν∇εu) , (2.1a)

Ro
Dv

Dt
+ u = −∂p

∂y
+ E∇ε · (ν∇εv) , (2.1b)

Ro ε2
Dw

Dt
= −∂p

∂z
+ b+ ε2E∇ε · (ν∇εw) , (2.1c)

Ro
Db

Dt
=

E

Pr
∇ε · (κ∇εb) , (2.1d)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1e)

for the parameters defined in Table 1. The viscosity and diffusivity functions, ν(z) and
κ(z), depend only on the depth, z, and are normalised by their depth-averaged values, ν
and κ respectively. The operators D/Dt and ∇ε are given by

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
, (2.2a)

∇ε =

(
ε
∂

∂x
, ε
∂

∂y
,
∂

∂z

)
. (2.2b)

In the following analysis, we will allow arbitrary values of Pr, but will highlight the
case where Pr = 1. We use boundary conditions with vanishing vertical shear, vertical
velocity and buoyancy flux on the top and bottom boundaries and consider a fluid layer
between z = ±0.5 for unbounded x and y.

We will later consider the two dimensional case where the x-axis is aligned with the
local density (or buoyancy) gradient. Motivated by the observation that variations aligned
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Parameter Rossby No. Ekman No. Prandtl No. Aspect Ratio
Symbol Ro E Pr ε

Definition ε∆b/f2L ν/fH2 ν/κ H/L

Table 1: Definitions of the dimensionless parameters and their values for buoyancy
difference, ∆b, Coriolis parameter, f , horizontal lengthscale, L, vertical lengthscale, H
and depth-averaged dimensional viscosity and diffusivity, ν and κ.

Figure 1: Non-dimensional frontal geometry.

with the frontal axis are much smaller than cross-front variations, we will neglect along-
front derivatives, although we will retain all three components of the velocity vector. We
then assume without loss of generality that the low-buoyancy region is on the left of the
front while the high-buoyancy region is on the right (see Figure 1).

3. Analytic solution

Here, we analyze Eqns. 2.1 using a multiple-time-scale asymptotic analysis with Ro as
our small parameter and ε = O(Ro). Unlike the Rossby number, we do not assume that
the Ekman number is small, and specifically consider E = O(1). Later, in Section 3.4 we
will discuss the limit of E = O(Ro) and the connection with previous work by Garrett
& Loder (1981).

After expanding u and b in powers of Ro, we find that there are two relevant timescales:
a fast timescale, τ = t/Ro, representing vertical diffusion and initial adjustment, and a
slow timescale, T = Ro t, representing horizontal shear dispersion and spreading. The
intermediate timescale, t, does not appear in the analysis.

We can use these new timescales to expand the time derivative as

∂

∂t
=

1

Ro

∂

∂τ
+Ro

∂

∂T
. (3.1)

The velocity and buoyancy are also expanded in powers of Ro,

u = u0 +Rou1 + . . . , and b = b0 +Ro b1 + . . . . (3.2)

For simplicity, we restrict our attention to initial conditions where the buoyancy is
independent of depth, i.e. b|t=0 = f(x, y), although the initial velocity can have arbitrary
depth dependence. After using the expansions introduced above, we collect terms in the
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governing equations (2.1) of like order in Ro. The sections below describe solutions of
the resulting equations for the leading-order contributions to velocity and buoyancy.

3.1. The O(1) balance

We now consider the leading order buoyancy and momentum balances with O(1) terms.
The steady version of this balance is the TTW balanced described by Gula et al. (2014)
and McWilliams (2017). The analysis in this section extends their work by including time
dependence and unbalanced initial conditions. We find that the time dependence occurs
on the fast timescale, τ , and that as τ →∞, the steady TTW balance is recovered.

3.1.1. Buoyancy

The O(1) terms in the buoyancy conservation equation (2.1d) are

∂b0
∂τ

=
E

Pr

∂

∂z

(
κ
∂b0
∂z

)
. (3.3)

This is a diffusion equation and since the initial state is depth-independent the solution
is of the form

b0 = b0(x, y, T ) where b0(x, y, 0) = f(x, y), (3.4)

which is vertically homogeneous and hence not affected by vertical diffusion. We note
that a z-dependent initial buoyancy field will result in diffusion towards a vertically
homogeneous state on the fast timescale τ ; hence, the leading order buoyancy will be
depth-independent after some fast initial adjustment. Taking a depth-dependent initial
b0 will not change the long term behaviour of the system and will just add additional
transients to the velocity fields and higher-order buoyancy terms.

3.1.2. Velocity

The O(1) terms in the momentum and continuity equations (2.1a - 2.1c and 2.1e) are

∂u0
∂τ
− v0 = −∂p0

∂x
+ E

∂

∂z

(
ν
∂u0
∂z

)
, (3.5a)

∂v0
∂τ

+ u0 = −∂p0
∂y

+ E
∂

∂z

(
ν
∂v0
∂z

)
, (3.5b)

−∂p0
∂z

+ b0 = 0, (3.5c)

∂u0
∂x

+
∂v0
∂y

+
∂w0

∂z
= 0. (3.5d)

Equation 3.5c is hydrostatic balance, and since b0 is independent of z, this gives

p0 = b0z, (3.6)

using z = 0 as the reference level. It should be noted that the O(1) momentum equations
are linear in the horizontal velocity, uH0 = (u0, v0, 0). Through the hydrostatic relation,
the horizontal pressure gradient is a linear function of the horizontal buoyancy gradient.
Therefore, the horizontal velocity is a linear function of the horizontal buoyancy gradient,
i.e. (

u0
v0

)
= −
√
E

(
A1(ζ, τ) A2(ζ, τ)
B1(ζ, τ) B2(ζ, τ)

)(∂b0
∂x
∂b0
∂y

)
, (3.7)
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where ζ = z/
√
E. By splitting equations 3.5a and 3.5b into parts linear in ∂b0/∂x and

∂b0/∂y, we obtain the system of equations

LνA1 = B1 + ζ, (3.8a)

LνA2 = B2, (3.8b)

LνB1 = −A1, (3.8c)

LνB2 = −A2 + ζ, (3.8d)

where Lν = ∂
∂τ −

∂
∂ζ

(
ν ∂
∂ζ

)
is a diffusion operator. These equations can be combined to

give

−L2
νK(ζ, τ) = K(ζ, τ) + ζ, (3.9)

and K(ζ, τ) is a function to be determined. By applying stress-free boundary conditions
at z = ±1/2, we obtain B1 = −A2 = K and A1 = B2 = −LνK. The O(1) horizontal
velocity can then be written as

uH0 = −
√
EK(ζ, τ) · ∇Hb0, (3.10)

where

K =

(
−LνK −K
K −LνK

)
, (3.11)

and ∇H is the horizontal gradient operator. It is instructive to re-write (3.10) as

uH0 = −
√
E [−LνK∇Hb0 +K ẑ×∇Hb0] , (3.12)

hence, −LνK describes the velocity component that is locally perpendicular to the front
while K describes the velocity that is locally orientated along the front.

From mass conservation we can solve for w0 in terms of K(ζ, τ),

∂w0

∂z
= −∇H · uH0 = −

√
E LνK(z′, τ)∇2

Hb0, (3.13)

which can be integrated to obtain

w0 = −
√
E

(∫ z

−1/2
LνK(z′, τ) dz′

)
∇2
Hb0. (3.14)

To complete the solution for the O(1) velocity, we need to solve for K(ζ, τ). We begin
by considering the steady-state solution obtained by neglecting the time derivatives in
equations 3.5a and 3.5b and denoting the steady-state solution K0(ζ). Equation 3.9
becomes

− ∂

∂ζ

(
ν
∂2

∂ζ2

(
ν
∂

∂ζ
K0

))
= K0 + ζ. (3.15)

For a general ν(ζ) we can solve this equation numerically, subject to boundary conditions
K ′0 = 0 and (νK ′0)′′ = 0 at z = ±0.5. The steady-state vertical velocity is given by

w0 = E ν(z)K ′0

(
z/
√
E
)
∇2
Hb0. (3.16)

We now return to the general time-dependent case described by equation (3.9) and let
K(ζ, t) = K1(ζ, t) +K0(ζ) for steady-state solution K0. Equation (3.9) becomes

− ∂

∂ζ

(
ν
∂2

∂ζ2

(
ν
∂

∂ζ
K0

))
− L2

νK1 = K0 +K1 + ζ, (3.17)
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hence,

−L2
νK1 = K1, (3.18)

with boundary conditions K ′1 = (LνK1)′ = 0 at z = ±0.5. On substituting for Lν , we
obtain (

∂

∂τ
− E ∂

∂z
ν
∂

∂z

)2

K1 = −K1, (3.19)

which we solve using separation of variables. Seeking solutions of the form K1 =
T (τ)Z(z), we find

K1 =

∞∑
n=0

Bne
−Eλnτ [cos τ + Eλn sin τ ]Zn(z), (3.20)

where Zn is an eigenfunction of the linear system

∂

∂z

(
ν
∂Zn
∂z

)
= −λnZn, (3.21)

with eigenvalue λn. The boundary conditions discretise the modes and lead to an
orthogonality relation ∫ 1/2

−1/2
ZnZmdz = z2nδnm. (3.22)

We now consider initial conditions for K = K0 +K1 and use Eq. (3.22) to determine
the coefficients Bn for each case. We denote the initial conditions K(z, 0) = K(z). Using
equation (3.20), we have

K1(z, 0) =

∞∑
n=0

BnZn(z), (3.23)

and using (3.22), we have

Bn =
1

z2n

∫ 1/2

−1/2
K1(z, 0)Z(z)dz =

1

z2n

∫ 1/2

−1/2

[
K(z)−K0(z/

√
E)
]
Z(z)dz. (3.24)

Combining the results given above, we can now write out the solution for K(ζ, τ),

K(z, τ) = K0

(
z/
√
E
)

+

∞∑
n=0

Bne
−Eλnτ [cos τ + Eλn sin τ ]Zn(z), (3.25)

and the solution for −LνK,

−LνK(z, τ) = E
∂

∂z

(
ν
∂K0

∂z

)
+

∞∑
n=0

Bne
−Eλnτ [sin τ − Eλn cos τ ]Zn(z). (3.26)

Some important initial conditions include stationary flow (u = 0) which corresponds
to K = 0, thermal wind balance which corresponds to K = −z/

√
E, and steady TTW

balance which corresponds to K = K0 and hence Bn = 0. In all cases, after an initial
adjustment period, the solution for u0 approaches steady TTW balance. The transients
decay exponentially on a timescale of τ = O(1/E) corresponding to t = O(Ro/E).

3.1.3. Summary of the O(1) solution

When expanded in the limit of small Rossby number, the buoyancy conservation
equation at leading order (O(1)) reduces to a diffusion equation on the fast timescale, τ .
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In summary, the O(1) velocity is

u0 = −
√
E

[
−LνK(z, τ)

∂b0
∂x
−K(z, τ)

∂b0
∂y

]
, (3.27)

v0 = −
√
E

[
K(z, τ)

∂b0
∂x
− LνK(z, τ)

∂b0
∂y

]
, (3.28)

where K and −LνK are given by equations 3.25 and 3.26 and

w0 = E

[
ν K ′0

(
z/
√
E
)
−
∞∑
n=0

Bn√
E
e−Eλnτ [− sin τ + Eλn cos τ ]

∫ z

−1/2
Zn(z′)dz′

]
∇2
Hb0, (3.29)

which reduces to steady TTW balance (Eq. 3.16), for large τ . The cos τ and sin τ terms
correspond to inertial waves generated by departures from steady TTW balance in the
initial conditions. Analytic solutions can be obtained for constant ν (see Appendix A).

It is useful to consider two limiting cases of the O(1) velocity in terms of the Ekman
number, E. For small E the along front velocity approaches thermal wind balance and
all other velocity components become small, while for large E all velocity components
become small due to the damping of motion by the high viscosity. The dependence of
K0, and hence u0 and ψ0, on the Ekman number for a constant ν is given in Appendix
A.

Figure 2 shows the steady-state O(1) velocity field (i.e. TTW balance) expressed in
terms of an x− z streamfunction, ψ0, for a y-independent buoyancy field

b0 = tanh(x), (3.30)

and constant ν with E = 0.1. The streamfunction is defined by u = ∂ψ/∂z and w =
−∂ψ/∂x, and in this case is

ψ0 = −EK ′0
(
z/
√
E
) ∂b0
∂x

. (3.31)

The streamfunction corresponds to anticlockwise circulation in the x− z plane and will
lead to stable stratification inside the front. There is upwelling on the high-buoyancy side
of the front and downwelling on the low-buoyancy side, in regions of negative and positive
curvature in the buoyancy field respectively. The along-front velocity (v0) consists of jets
perpendicular to the buoyancy gradient and is in the same direction as the thermal wind
velocity but with reduced shear near the top and bottom boundaries.

To demonstrate the time-dependence of the leading order velocity field, Figure 3
shows K(z, τ) for E = 0.1 and 0.01, ν = 1 and initial condition K(z, 0) = 0. This
initial condition corresponds to no flow so the system will rapidly adjust to a balanced
state. Inertial waves occur with a period of 2π, corresponding to a dimensional period of
2π/f , and are damped by viscosity on a timescale of τ = O(1/Eλ1), corresponding to
a dimensional decay rate of λ1ν/H

2, where λ1 is the smallest non-zero eigenvalue. For
constant ν, λ1 = π2 ≈ 10, and inertial waves will be observed for E � 0.1. Figure 3
shows that damped inertial waves occur for E = 0.01, while for E = 0.1, no waves are
apparent since the inertial period and damping timescale are nearly equal.

3.2. The O(Ro) buoyancy balance

As shown above, the leading order (O(1)) buoyancy, b0, is independent of depth, z.
However, the leading order cross-front velocity, u0, does exhibit depth-dependence, and
this shear causes the front to ‘slump’ over, leading to a stable stratification, a result
consistent with the SML model of Young (1994). This can be seen by solving the O(Ro)
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(a) (b)

(c) (d)

Figure 2: Leading order steady (τ independent) velocity fields, u0 (a), v0 (b), w0 (c) and
streamfunction, ψ0 (d), for E = 0.1, ν = 1 and b0 = tanhx.

(a) (b)

Figure 3: K(z, τ) for E = 0.1 (a) and 0.01 (b), constant ν, and initial condition K(z, 0) =
0 corresponding to no initial flow. Note that the along front velocity is proportional to
K and the cross front velocity is proportional to LνK = [∂/∂τ − E ∂/∂z(ν ∂/∂z)]K.
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buoyancy conservation equation, which conveniently involves just the O(1) contributions
to the velocity field found above.

The O(Ro) terms in the buoyancy conservation equation are

∂b1
∂τ

+ u0
∂b0
∂x

+ v0
∂b0
∂y

=
E

Pr

∂

∂z

(
κ
∂b1
∂z

)
, (3.32)

which can be re-written as the forced diffusion equation[
∂

∂τ
− E

Pr

∂

∂z

(
κ
∂

∂z

)]
b1 = −uH0 · ∇Hb0, (3.33)

where

−uH0 · ∇Hb0 =
√
E (∇Hb0 ·K · ∇Hb0) = −

√
ELνK |∇Hb0|2 . (3.34)

It is convenient to define a function M(z, τ) such that

b1 = −
√
EM(z, τ) |∇Hb0|2 , (3.35)

and, using the definition of Lν , (3.33) becomes[
∂

∂τ
− E

Pr

∂

∂z

(
κ
∂

∂z

)]
M =

[
∂

∂τ
− E ∂

∂z

(
ν
∂

∂z

)]
K. (3.36)

A general solution to (3.36) for ν 6= κ and arbitrary Pr is derived in Appendix B. We
note that the steady-state solution for M , denoted M0, is given by

M0 = Pr

∫ z

0

[
ν

κ

∂

∂z′
K0

(
z′/
√
E
)]
dz′, (3.37)

which reduces to M0 = PrK0 for ν = κ. For Pr = 1 and ν = κ we can write equation
3.36 as [

∂

∂τ
− E ∂

∂z

(
ν
∂

∂z

)]
(M −K) = 0, (3.38)

so we write M ′ = M − K with initial condition M ′|τ=0 = M− K corresponding to
M |τ=0 =M. We now use separation of variables to write

M ′ =

∞∑
n=0

Dne
−EλnτZn(z), (3.39)

where

Dn =
1

z2n

∫ 1/2

−1/2
[M−K]Zndz, (3.40)

hence,

M = K0 +

∞∑
n=0

[Bn(cos τ + Eλn sin τ) +Dn] e−EλnτZn(z). (3.41)

The balanced buoyancy solution for ν = κ and arbitrary Pr can be written

b = b0(x, y, T )−
√
ERoPrK0

(
z/
√
E
)
|∇Hb0|2 +O

(
Ro2

)
. (3.42)

Figure 4 shows the O(1) and O(Ro) contributions to the buoyancy for E = 0.1, Ro = 0.01
and Pr = 1 and b0(x) = tanh(x). The O(Ro) contribution to the buoyancy results in a
slumping of the front towards a stable stratification.

As the front slumps, the surface buoyancy gradient can increase corresponding to a
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(a) (b)

Figure 4: (a) The steady state buoyancy field to O(Ro) at x = 0, b(0, z) = b0(0) +
Ro b1(0, z), and (b) the O(Ro) correction term, b1(x, z). Here E = 0.1, Ro = 0.01,
Pr = 1, ν = κ = 1 and b0 = tanh(x).

(a) (b)

(c) (d)

Figure 5: M(z, τ) for (E,Pr) = (0.1, 1) (a), (0.01, 1) (b), (0.1, 2) (c), and (0.01, 2) (d).
We use ν = κ = 1 and initial conditions K(z, 0) = 0 corresponding to no initial flow
and M(z, 0) = 0 corresponding to an initially depth independent front. Note that b1 =
−
√
EM |∇Hb0|2.
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sharpening of the front hence allowing for short periods of frontogenesis. The horizontal
buoyancy gradient is given by

∇Hb = ∇Hb0(x, y, T )−
√
ERoPrK0

(
z/
√
E
)
∇H |∇Hb0|2 +O

(
Ro2

)
. (3.43)

At the upper surface where K0 < 0, the buoyancy gradient (|∇Hb|) is larger than its
initial value (|∇Hb0|) on the low-buoyancy side of the front, while the converse is true
on the high-buoyancy side of the front. Along the mid-plane (z = 0) K0 = 0 and hence
the buoyancy gradient is equal to ∇Hb0. It should be noted that the enhancement and
reduction in the buoyancy gradient relative to ∇Hb0 is O(Ro) and hence frontogenesis is
a relatively weak effect for Ro� 1.

Figure 5 shows the time dependent M(z, τ) for four pairs of values of (E,Pr) and
initial conditions of no flow and no depth dependence in the buoyancy field. We can
see that the system rapidly adjusts to a balanced state with inertial waves for small E.
Larger Pr results in a longer adjustment period and more stable stratification.

3.3. The O(Ro2) buoyancy balance and shear dispersion

We now consider the O(Ro2) buoyancy balance. The depth-average of this balance
allows us to determine the evolution of the leading order buoyancy field, b0, over the slow
timescale, T . The evolution is found to be due to both shear dispersion and horizontal
diffusion, although horizontal diffusion is only important at late times.

3.3.1. Depth-Averaged Buoyancy

The previous two sections examined the leading order solutions to the time-dependent
TTW equations. For initial conditions not in TTW balance, the leading order contribu-
tions consist of an adjustment phase with damped inertial oscillations. The evolution of
u0 and b1 during the adjustment phase involves the fast timescale, τ . After the end of
the adjustment phase, the front will still evolve, but now on the slow timescale, T . In
this section, we examine the slow evolution of b0(x, y, T ) by depth-averaging the O(Ro2)
buoyancy conservation equation.

The O(Ro2) buoyancy equation is

∂b0
∂T

+
∂b2
∂τ

+ u1 · ∇Hb0 + u0 · ∇b1 =
E

Pr

∂

∂z

(
κ
∂b2
∂z

)
+

ε2E

Ro2Pr
κ∇2

Hb0, (3.44)

where we note that ε = O(Ro). We define the depth average as

∗ =

∫ 1/2

−1/2
∗ dz, (3.45)

and write a field f as f = f +f ′ where f ′ = 0. We assume that the depth averages of the
cross front components of uH0, uH1, . . . and the depth averages of b1, b2, . . . are zero.
This assumption holds if the initial conditions, the viscosity, ν, and the diffusivity, κ, are
symmetric in z about z = 0. We note that it is possible for depth-independent velocity
components to develop, balanced by a depth-independent pressure term, but these lead
to along front velocities which do not affect buoyancy advection across the front and
hence can be ignored. With this assumption, the depth-averaged buoyancy is simply

b = b0(x, y, T ). (3.46)

We now take a depth average of equation 3.44 and note that κ = 1 to get

∂b0
∂T

+
∂

∂x
u0b1 +

∂

∂y
v0b1 =

ε2E

Ro2Pr
∇2
Hb0, (3.47)
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where

uH0b1 =
(
u0b1, v0b1

)
= EMK · ∇Hb0|∇Hb0|2, (3.48)

so we can define a second-rank effective diffusivity tensor κeff by

−uH0b1 = κeff · ∇Hb0, (3.49)

such that

κeff = −EMK |∇Hb0|2, (3.50)

and allowing us to write equation 3.47 as

∂b0
∂T

= ∇H ·
[
κeff · ∇Hb0 +

ε2E

Ro2Pr
∇Hb0

]
. (3.51)

Since b0 does not evolve on the short timescale τ , we can describe its evolution using the

steady-state effective diffusivity, κ
(0)
eff , given by

κ
(0)
eff = −EM0K0 |∇Hb0|2, (3.52)

where M0 is given by equation 3.37 and

K0 =

(
E ∂
∂z

(
ν ∂K0

∂z

)
−K0

K0 E ∂
∂z

(
ν ∂K0

∂z

)) . (3.53)

We note that∫ 1/2

−1/2
E
∂

∂z

(
ν
∂K0

∂z

)[∫ z

−1/2

ν

κ

∂K0

∂z′
dz′

]
dz = −

∫ 1/2

−1/2
E
ν2

κ

(
∂K0

∂z

)2

dz < 0, (3.54)

hence, the diagonal terms of M0K0 are negative, the diagonal terms of κ
(0)
eff are positive

and κ
(0)
eff is positive definite.

Using κ
(0)
eff , we write equation 3.51 as

∂b0
∂T

= ∇H ·
[
−EM0K0 · ∇Hb0 |∇Hb0|2 +

ε2E

Ro2Pr
∇Hb0

]
, (3.55)

and define

Q(E) = −EM0K0/Pr, (3.56)

for positive definite matrix Q that depends only on E. Hence we can write the non-linear
diffusion equation, (3.55), as

∂b0
∂T

= ∇H ·
[
PrQ · ∇Hb0 |∇Hb0|2 +

ε2E

Ro2Pr
∇Hb0

]
. (3.57)

In the case of a y independent front, b0 = b0(x, T ), (3.57) reduces to

∂b0
∂T

=
∂

∂x

[
PrQ

(
∂b0
∂x

)3

+
ε2E

Ro2Pr

∂b0
∂x

]
, (3.58)

where

Q(E) = E2

∫ 1/2

−1/2

ν2

κ

(
∂K0

∂z

)2

dz = E

∫ 1/2

−1/2

ν2

κ
(K ′0)

2
dz > 0, (3.59)

since K0 = K0

(
z/
√
E
)

and hence ∂K0/∂z = E−1/2K ′0. Equation (3.58) is the Erdogan-

Chatwin equation, first derived for longitudinal dispersion in pipe flow by Erdogan &
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Chatwin (1967). This equation arises in many non-rotating physical contexts where the
dispersion rate is enhanced by buoyancy driven flow (Smith 1982).

3.4. Shear dispersion in the limit of small ekman number

Although the solution described in the previous sections is valid up to E = O(1), it is
useful to examine the solution for small Ekman number, specifically E = O(Ro). In this
limit, we recover a solution obtained previously by Garrett & Loder (1981).

We can write the buoyancy frequency, N2, as

N2 =
∂b

∂z
= Ro

∂b1
∂z

+O
(
Ro2

)
, (3.60)

so

N2 = −Ro
(√

E
∂M

∂z

)
|∇Hb0|2 +O

(
Ro2

)
. (3.61)

During the spreading regime,
√
E ∂M/∂z =

√
E ∂M0/∂z = (Pr ν/κ)K ′0 so

N2 = −RoPr ν
κ
K ′0

(
z/
√
E
)
|∇Hb0|2 +O

(
Ro2

)
. (3.62)

In the case of E = O(Ro) the solution for velocity approaches that of thermal wind
balance with K0(z/

√
E) = −z/

√
E outside of thin Ekman layers near the top and

bottom surfaces. These Ekman layers generate a depth independent vertical velocity
in the interior by Ekman pumping (Garrett & Loder 1981). The vertical velocity is
independent of z and the cross-front velocity is zero outside of the Ekman layers. Hence
K ′0 → −1 so

N2 ∼ RoPr ν
κ
|∇Hb0|2 +O

(
Ro2

)
. (3.63)

In the 2d case, we have that

κeff = E Pr
[ν2
κ

(K ′0)
2
] ∣∣∣∣∂b0∂x

∣∣∣∣2 . (3.64)

and from equation 3.62, to leading order

N2 = −RoPrK ′0
ν

κ

∣∣∣∣∂b0∂x
∣∣∣∣2 , (3.65)

and hence

κeff =
E[ν2K ′20 /κ]N2

−Roν K ′0/κ
. (3.66)

For small E we have K ′0 → −1 so K ′20 → 1. If we assume that ν and κ are approximately
constant and equal in the interior region, away from the Ekman layers, the effective
diffusivity is

κeff ∼
N2

Ro
E, (3.67)

in the small-E and -Ro limit. We note that N2 is approximately constant in the interior.
Dimensionally this result corresponds to

κeff ∼
N 2

f2
νdim, (3.68)

where νdim is the depth-averaged turbulent viscosity and N is the dimensional buoyancy
frequency. This result was obtained previously by Garrett & Loder (1981).
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3.5. Self-similar solution

As the front spreads through shear dispersion on the slow timescale, T , it adopts a
self-similar cross-front profile. The self-similar solution can be obtained from the Erdogan-
Chatwin equation (3.58). In this section we will consider a two-dimensional front with
b0 = F (x, T ). This assumption isn’t necessary for the analysis but simplifies the notation.
In this case, (3.58) can be written as

∂F

∂T
=

∂

∂x

[(
c0 + c2

(
∂F

∂x

)2
)
∂F

∂x

]
, (3.69)

where

c0 =
ε2E

Ro2Pr
and c2 = PrQ(E), (3.70)

subject to boundary and initial conditions

F → ±1 as x→ ±∞ and F (x, 0) = f(x). (3.71)

We now consider the limit in which we can neglect horizontal diffusion, i.e. c0 ' 0. This
limit gives

∂F

∂T
= c2

∂

∂x

(
∂F

∂x

)3

. (3.72)

We now seek a similarity solution of the form

F (x, T ) = F (η) for similarity variable η =
x

γTα
. (3.73)

We note that it will not in general be possible to satisfy the initial condition F (x, 0) =
f(x): however, Smith (1982) showed that, in the case where the non-linear diffusion
dominates, the solutions to (3.69) will limit to this similarity solution for all nearby
initial conditions. Using (3.72), we have

−αη
T
F ′ =

c2
γ4T 4α

(
F ′3
)′
. (3.74)

We let α = 1/4 and k2 = 4c2/γ
4 so equation 3.74 becomes

ηF ′ = −k2
(
F ′3
)′
, (3.75)

which we can solve for F ′; without loss of generality we assume that F ′(0) = 1. The
solution for F ′ is

F ′(η) =


0, η < −

√
3k2√

1− η2

3k2
, η ∈

[
−
√

3k2,
√

3k2
]

0, η >
√

3k2

, (3.76)

which we integrate to obtain the solution (Smith 1982)

F (η) =


−1, η < −

√
3k2

1
2

[
η
√

1− η2

3k2
+
√

3k2 arcsin
(

η√
3k2

)]
, η ∈

[
−
√

3k2,
√

3k2
]

1, η >
√

3k2

. (3.77)

By matching F
(
±
√

3k2
)

= ±1 we obtain
√

3k2 = 4/π; hence,

k2 =
16

3π2
, (3.78)
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(a) (b)

Figure 6: (a) Plots of the analytic similarity solution, F (η), to equation 3.72 and
derivatives F ′(η) and F ′′(η). Note that b0 ∝ F , (u0, v0) ∝ F ′ and w0 ∝ F ′′. (b) The
numerical solution to equation 3.69, F (x, T ), with initial condition b(x, T0) = tanh(x)
for T0 = 4, E = 0.1, ν = κ = 1, Ro = 0.05, ε = 0.002 and Pr = 1 corresponding
to c0 = 1.6 × 10−4 and c2 = 0.0208. The initial condition in the numerical solution is
imposed at T = T0 to avoid the singularity in η at T = 0. The vertical lines in (b) show
the predicted frontal edges, η = ±4/π.

and

γ =

(
3π2c2

4

)1/4

. (3.79)

As k2 is independent of E and Pr we can see that the form of the solution is the
same for all parameter ranges with the parameters entering only through the spreading
parameter γ which describes the frontal width.

We note that F and F ′ are continuous while F ′′ diverges at the edge of the front, i.e.
as η → ±

√
3k2, as

F ′′(η) =


0, η < −

√
3k2

− η

3k2
√

1−η2/3k2
, η ∈

(
−
√

3k2,
√

3k2
)

0, η >
√

3k2

. (3.80)

When horizontal diffusion is included as in (3.69), this singularity is smoothed.
Figure 6.a shows the similarity solution, F (η), and its first and second derivatives. The

function F (η) is approximately linear inside the front with regions of large curvature at
the edges. Figure 6.b shows the numerical solution to (3.69) for c0 = 1.6 × 10−4 and
c2 = 0.0208 at T = T0, T = T0 + 25, T = T0 + 75 and T = T0 + 100. The initial profile is
given by b(x, T0) = tanh(x) for T0 = 4 and we see that this profile has evolved towards
the similarity solution, F (η), by time T = T0 + 75 before spreading out in a self similar
manner for larger T .

By considering the relative magnitudes of the shear dispersion and horizontal diffusion
terms, we find that our similarity solution is valid for

t� Ro3Pr3Q(E)

ε4E2
. (3.81)

Figure 7 shows logarithmic plots of Q and γ/Pr1/4 as functions of the Ekman number
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(a) (b)

Figure 7: Logarithmic plots of Q(E) (a) and γ/Pr1/4 (b) as functions of E for constant
ν. Note that γ/Pr1/4 depends only on E and the frontal width is proportional to γT 1/4.

for constant ν. It should be noted that from (3.69) and (3.70) that the effective diffusivity
is proportional to PrQ, while the frontal width is given by

lf (T ) = 8γT 1/4/π, (3.82)

since the edges of the front correspond to η = ±
√

3k2. As described in §3.3.1 the
effective diffusivity depends on the departure from the depth-averaged buoyancy, b1 =
−
√
EPrK0|∂b0/∂x|2, and the cross-front velocity, u0 = −

√
EK ′′0 ∂b0/∂x.

In the limit of small E, the cross-front velocity becomes small as the system is
approximately in thermal wind balance. As discussed in §3.4 this leads to a small effective
diffusivity, consistent with the result that Q ∼ E and γ ∼ E1/4 in this limit (see Figure
7). In the limit of large E, strong vertical mixing causes the stratification and the cross-
front velocity to decrease with increasing E resulting in a smaller effective diffusivity and
slower spreading. In the limit of large E, Q ∼ E−3 and γ ∼ E−3/4, consistent with this
description. The effective diffusivity and spreading rate are maximum for an intermediate
value of E ≈ 0.06. See Appendix A for a more complete description of the dependence
of u0 and b1 on E.

Ferrari & Young (1997) consider a frontal problem using an ‘intermittent mixing’
parametrisation where the tracers are advected freely until time t = tmix where the
vertical tracer profile is instantaneously set to its vertical average and the process
repeated. The governing equation for the depth independent buoyancy profile is of the
same form as equation 3.72 with a different value of c2; hence it admits the same similarity
solution. This will be true for any parametrised model in which the leading order velocity
is linear in the buoyancy gradient, u ≈ c(z)bx, and the leading order buoyancy flux
scales as Fb = ub ∼ uDzu bx ∼ bx

3 for some linear, z-dependent operator, Dz, which
is determined by the parametrisation. We note that the vertical profiles of velocity and
buoyancy differ between models, although the leading order depth-averaged tracer profiles
have the same form over long times.

Figure 8 shows the long-term evolution of the background buoyancy, buoyancy gradi-
ents and cross front velocity using the similarity solution. We can see that as the front
spreads, both the vertical and the horizontal buoyancy gradients decrease and the cross
front velocity decelerates. Since the vertical buoyancy stratification formed by the initial
slumping is maintained by the cross front velocity shear, this stratification weakens as
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(a) (b)

(c) (d)

Figure 8: Plots of b0(x, T ) (a), N2
0 (x, z, T ) = Ro∂b1/∂z at z = 0 (b), M2

0 (x, T ) = ∂b0/∂x
(c) and u0(x, z, T ) at z = 1/2 (d) for E = 0.1, Ro = 0.01 and Pr = 1. We use the
similarity solution for b0 and assume that all transients have decayed. Note that b0 ∼ F ,
N2

0 ∼ F ′2 and M2
0 , u0 ∼ F ′.

expected when the cross front velocity decelerates. The along front velocity, v0, and
vertical velocity, w0, also decrease as the front spreads.

It should be noted that the vertical structure of the buoyancy perturbation, b1, and
the velocities, (u0, v0, w0), are independent of the long timescale, T , and assuming that
any transients have decayed, only depend on the depth z and Ekman number.

3.6. Summary of the analytic solution

Combining our results from the O(1), O(Ro) and O(Ro2) balances, we can write our
analytic solution as

uH(x, y, z, τ, T ) = −
√
EK(z, τ) · ∇Hb0(x, y, T ) +O(Ro), (3.83a)

w(x, y, z, τ, T ) = E

[∫ z

−1/2

−LνK(z′, τ)√
E

dz′

]
∇2
Hb0(x, y, T ) +O(Ro), (3.83b)

b(x, y, z, τ, T ) = b0(x, y, T )−Ro
√
EM(z, τ) |∇Hb0(x, y, T )|2 +O(Ro2), (3.83c)
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where b0 satisfies

∂b0
∂T

= ∇H ·
[
PrQ · ∇Hb0 |∇Hb0|2 +

ε2E

Ro2Pr
∇Hb0

]
. (3.84)

4. Conclusions and Discussion

Here, we have examined the influence of small-scale turbulence on the adjustment
and spreading of density fronts in a rotating reference frame using a multiple-time-scale
analysis and asymptotic analysis. After a short initial adjustment period, a self-similar
spreading regime develops in which an effective horizontal diffusion results from the
coupling of a vertically-sheared cross-front flow and vertical diffusion. During the initial
adjustment period, weak frontogenesis is possible due to the slumping of the front while
the long-term spreading is always frontolytic.

The time dependence and similarity solutions during the spreading phase have been
calculated analytically using an expansion in small Rossby number, and allow us to
predict the rate of spreading for a wide range of Ekman and Rossby numbers. The
dominant balance in the buoyancy equation is between vertical diffusion and cross-
front advection, resulting in a buoyancy field consisting of both spreading and slumping
components in a dynamic equilibrium. The dominant balance in the momentum equations
is the TTW balance between Coriolis forces, vertical momentum mixing and horizontal
pressure gradients for which analytic and numerical solutions have been presented. This
balance holds until the effects of horizontal diffusion become significant at late times.

Horizontal spreading of the depth-averaged buoyancy results from shear dispersion,
which dominates the horizontal turbulent diffusion in the frontal region until late times
(3.81). The spreading is described by the non-linear Erdogan-Chatwin (Erdogan &
Chatwin 1967) equation, which arises in many contexts and has solutions that tend to a
similarity solution in the region where shear dispersion dominates. Shear dispersion leads
to a cross-front density profile that is nearly linear inside the front, with high curvature
at the edges of the frontal zone. High curvature is associated with large vertical velocity
through the TTW balance, which results in up/down-welling confined to thin bands
at the edges of the front. Qualitatively, this result is similar to the velocity confinement
effect observed by Shakespeare & Taylor (2013) for inviscid strain-driven fronts, although
it arises from a different mechanism.

Dimensionally, we can write the frontal width as

Lf (t) =

(
3072

π2

)1/4 [
Q(E)H2∆b2Pr

f3

]1/4
t1/4, (4.1)

using (3.82) and hence the spreading rate is given by

dLf
dt

=
768

π2

[
Q(E)H2∆b2Pr

f3

]
L−3f , (4.2)

where Q(E) is defined in (3.59). For a typical ocean front with H ∼ 100m, Lf ∼ 10 km,
f ∼ 10−4s−1 and ∆ρ ∼ 0.1kgm−3, the observed frontal spreading would occur at a rate
of order 1 km per day for an Ekman number of E = 0.1 (corresponding to a turbulent
viscosity of ν ∼ 0.1m2s−1). By comparison, spreading due to horizontal diffusion would
just be of the order of 1m per day for the same parameters.

Using scaling arguments, we can relate the Ekman number to the turbulent viscosity
associated with convection driven by a surface heat flux, J0, or a surface wind stress, τw.
In the case of convection, the turbulent Ekman number scales according to (Taylor &
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Ferrari 2011)

E ' C

f

(
J0αg

cpρ0H2

)1/3

,

where H is the depth of the convective layer, ρ0 is the water density, cp is the heat
capacity, α is the thermal expansion coefficient, C is an empirical scaling constant and g is
gravitational acceleration. Using typical values for the ocean including a convective layer
depth of 100m and f = 10−4s−1, typical heat flux values in the range J0 = 1−1000W/m2

correspond to Ekman numbers in the range E ' 0.1 − 1. Similarly, the Ekman number
can be related to the wind stress using (Enriquez & Taylor 2015)

E ' C

fH

(
τw
ρ0

)1/2

,

and a wind stress of τw = 1Nm−2 corresponds to E ' 0.1.

In our analysis, the only mechanism driving frontogenesis is the coupling between
the cross-front velocity and the along-front thermal wind through the turbulent mixing.
For less idealised flows, the tendency for fronts to sharpen or spread is governed by
a competition between the classical frontogenesis function and the effects of turbulent
mixing. Interestingly we observe that turbulent mixing can both sharpen and spread
fronts with sharpening associated with frontogenesis during an initial adjustment phase
and spreading associated with shear dispersion.

In the ocean and atmosphere, deformation of fronts by larger-scale circulation can gen-
erate cross-front circulation that can drive further frontogenesis (Hoskins & Bretherton
1972). Shear dispersion through vertical mixing might provide a mechanism to arrest
deformation-driven frontogenesis, which can lead to finite-time singularities (Hoskins &
Bretherton 1972). Future work could include externally imposed large-scale strain to
examine frontal arrest, which would provide insight into the properties of equilibrated
fronts.

To simplify our analysis, we have kept the viscosity and diffusivity independent of
time. Recent observations and numerical simulations have found that turbulence can be
significantly enhanced at strong fronts including the Kuroshio (D’Asaro et al. 2011), the
Gulf Stream (Thomas et al. 2013) and the California Current (Johnston et al. 2011).
On the other hand, the stable stratification that develops as a front slumps has been
implicated in the suppression of turbulent mixing (Taylor 2016; Taylor & Ferrari 2010).
It remains unclear how small-scale turbulence depends on the large-scale properties of the
front and the surface wind and buoyancy forcing. In either case, the turbulent viscosity
and diffusivity probably vary with position across the front and in time, effects that are
neglected here. Varying levels of small-scale turbulence could lead to a feedback between
the evolution of the front through TTW balance and turbulent mixing. The coupled
response of turbulence and frontal dynamics will be the topic of future work.

The authors would like to thank Raffaele Ferrari, Jim McWilliams, Leif Thomas and
Jacob Wenegrat for stimulating and helpful conversations. We are also very grateful to
Bill Young for comments on an early draft of the paper and for pointing out various
connections with previous literature on shear dispersion.
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Appendix A. Analytic Solution for the O(1) Velocity for Constant ν

We assume constant viscosity, ν = 1, to find an analytic solution for the structure
function K0. Equation 3.15 becomes

−K(4)
0 = K0 + ζ, (A 1)

with boundary conditions K ′0 = K ′′′0 = 0 at ζ = ±ζ0 where ζ0 = 1/
√

4E. This is a fourth
order ordinary differential equation which can be solved analytically. The exponents of
the independent solutions are (1± i)/

√
2 and (−1± i)/

√
2 so, since the system is clearly

odd in ζ, we use symmetry to obtain the solution

K0 = −ζ + C+ cs(ζ) + C− sc(ζ), (A 2)

where

cc(ζ) = cosh
(
ζ/
√

2
)

cos
(
ζ/
√

2
)
,

cs(ζ) = cosh
(
ζ/
√

2
)

sin
(
ζ/
√

2
)
,

ss(ζ) = sinh
(
ζ/
√

2
)

sin
(
ζ/
√

2
)
,

sc(ζ) = sinh
(
ζ/
√

2
)

cos
(
ζ/
√

2
)
.

(A 3)

From the boundary conditions, K ′0(ζ0) = K ′′′0 (ζ0) = 0, we get(
cc(ζ0) + ss(ζ0) cc(ζ0)− ss(ζ0)
cc(ζ0)− ss(ζ0) − cc(ζ0)− ss(ζ0)

)(
C+

C−

)
=

(√
2

0

)
, (A 4)

which we invert to get

C± =
1√
2

cc(ζ0)± ss(ζ0)

cc2(ζ0) + ss2(ζ0)
. (A 5)

We can also solve for Zn analytically using equation 3.21 which reduces to

∂2Zn
∂z2

= −λnZn. (A 6)

We obtain solutions

Zn(z) =


1, n = 0,

(−1)(n−1)/2 sin[nπz], n odd,

(−1) n / 2 cos[nπz], n even,

(A 7)

for

λn = n2π2, (A 8)

and

z2n =

{
1, n = 0,
1
2 , n ∈ N,

(A 9)

and integrate to get

∫ z

−1/2
Zn(z′)dz′ =


z + 1

2 , n = 0

(−1)(n+1)/2 cos[(1+2n)πz]
nπ , n odd,

(−1) n / 2 sin[(1+2n)πz]
nπ , n even.

(A 10)

We plot K0 and Zn in Appendix C when considering the numerical solutions for general
ν: see figures 11 and 12(a,b).

We now consider the Ekman number dependence of K0 in the case of constant ν and
κ, and Pr = 1. We find that there are regimes for small and large E where the maximum
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Function K0(ζ) K′0(ζ) K′′0 (ζ)
√
EK0(ζ) EK′0(ζ)

√
EK′′0 (ζ)

Small E E−1/2 1 1 1 E E1/2

Large E E−5/2 E−2 E−3/2 E−2 E−1 E−1

Table 2: The Ekman number dependence of the maximum values of K0(ζ), K ′0(ζ), K ′′0 (ζ),√
EK0(ζ), EK ′0(ζ) and

√
EK ′′0 (ζ) for ζ = z/

√
E in the case of small and large E. Here

we ignore any constant coefficients.

(a) (b)

Figure 9: Logarithmic plots of the maximum magnitude as a function of Ekman number
of (a): K0(ζ), K ′0(ζ) and K ′′0 (ζ) and (b):

√
EK0(ζ), EK ′0(ζ) and

√
EK ′′0 (ζ) for ζ = z/

√
E.

values of K0 and its derivatives obey power law dependences on E. These are given in
table 2 and can be calculated by expanding equation A 2 for small and large E.

The maximum values for K0 and K ′′0 occur at the boundaries as the horizontal velocity
is highest at the surface while the maximum for K ′0 occurs in the interior of the vertical
domain corresponding to the location of the maximum vertical velocity.

Figure 9 shows logarithmic plots of the maximum magnitude of K0(ζ), K ′0(ζ), K ′′0 (ζ),√
EK0(ζ), EK ′0(ζ) and

√
EK ′′0 (ζ) as functions of the Ekman number. We can see that

for small E the along-front velocity, proportional to
√
EK0, approaches a constant value

corresponding to the surface velocity from the thermal wind balance profile. The cross-
front and vertical velocities tend to zero for small E in agreement with thermal wind
balance. For large E all velocity components become small as motion is damped by the
high viscosity. We note that there is a maximum for both the vertical and the cross-front
velocities at E ≈ 0.1. Analytically, we can show that

K ′0 ∼

{
−1, E � 1,
1
E2

[
z2−1/4

16 − z4−1/16
24

]
, E � 1,

(A 11)

hence,

Q(E) ∼

{
E, E � 1,

31
362880E

−3, E � 1,
(A 12)

in agreement with figure 7.
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Appendix B. Solution for M with arbitrary ν and κ

To solve for M with arbitrary ν and κ, we take the Laplace transform of equation 3.36
to get [

s− E

Pr

∂

∂z

(
κ
∂

∂z

)]
M̃(z, s)−M(z, 0) = P̃ (z, s), (B 1)

where we take M(z, 0) =M(z) as our initial state. We usually takeM = 0 corresponding
to a depth-independent front: if we were instead to consider a balanced initial setup, the
solution would be given by the steady-state solution, M0. The forcing term, P̃ is given
by

P̃ (z, s) =

[
s− E ∂

∂z

(
ν
∂

∂z

)]
K̃(z, s)−K(z), (B 2)

where we can use equation 3.25 to write

K̃(z, s) =
1

s
K0

(
z/
√
E
)

+

∞∑
n=0

Bn

[
s+ 2Eλn

(s+ Eλn)2 + 1

]
Zn(z), (B 3)

so

P̃ (z, s) = [K0 −K]− 1

s
E
∂

∂z

(
ν
∂K0

∂z

)
+

∞∑
n=0

Bn

[
(s+ Eλn)(s+ 2Eλn)

(s+ Eλn)2 + 1

]
Zn(z). (B 4)

We note that

K0 −K = −
∞∑
n=0

BnZn(z), (B 5)

hence,

P̃ (z, s) = −1

s
E
∂

∂z

(
ν
∂K0

∂z

)
+

∞∑
n=0

Bn

[
Eλn(s+ Eλn)− 1

(s+ Eλn)2 + 1

]
Zn(z). (B 6)

We now write

M̃ =

∞∑
n=0

C̃n(s)Yn(z), (B 7)

where the eigenfunctions, Yn, are given by

∂

∂z

(
κ
∂Yn
∂z

)
= −µnYn, (B 8)

for eigenvalues µn where n = 0, 1, 2, . . . . We also define the orthogonality relation∫ 1/2

−1/2
YnYmdz = y2nδnm, (B 9)

for constant yn representing the normalisation of Yn.
We can expand P̃ and M in the basis Yn, so equation B 1 becomes

∞∑
n=0

(
s+

E

Pr
µn

)
C̃n(s)Yn(z) =

∞∑
n=0

(
Mn + Ẽn(s)

)
Yn(z), (B 10)

where

Ẽn(s) =
1

y2n

∫ 1/2

−1/2
P̃ (z, s)Yn(z)dz. (B 11)
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and

Mn =
1

y2n

∫ 1/2

−1/2
M(z)Yn(z)dz. (B 12)

Using the orthogonality relation, (B 9), we obtain

C̃n(s) =
Mn + Ẽn(s)

s+ E
Prµn

, (B 13)

and hence

M =

∞∑
n=0

Cn(τ)Yn(z), (B 14)

where the functions Cn(τ) are obtained as the inverse Laplace transforms of the functions

C̃n(s), i.e.

Cn(τ) = L−1C̃n(s). (B 15)

We can write Ẽn(s) as

Ẽn(s) =
Eµn
s

1

y2n

∫ 1/2

−1/2

[∫ z

−1/2

ν

κ

∂K0

∂z′
dz′

]
Yndz

+

∞∑
m=0

Bm

[
Eλm(s+ Eλm)− 1

(s+ Eλm)2 + 1

]
1

y2n

∫ 1/2

−1/2
ZmYndz,

(B 16)

where we have used integration by parts on the first term to write∫ 1/2

−1/2

∂

∂z

(
ν
∂K0

∂z

)
Yndz = −µn

∫ 1/2

−1/2

[∫ z

−1/2

ν

κ

∂K0

∂z′
dz′

]
Yndz. (B 17)

Hence,

C̃n(s) =
Mn

s+ E
Prµn

+
Eµn

s
(
s+ E

Prµn
) 1

y2n

∫ 1/2

−1/2

[∫ z

−1/2

ν

κ

∂K0

∂z′
dz′

]
Yndz

+

∞∑
m=0

Bm

[
Eλm(s+ Eλm)− 1(

s+ E
Prµn

)
((s+ Eλm)2 + 1)

]
1

y2n

∫ 1/2

−1/2
ZmYndz,

(B 18)

and so

Cn(τ) = Mne
− E

Prµnτ + Pr
[
1− e− E

Prµnτ
] 1

y2n

∫ 1/2

−1/2

[∫ z

−1/2

ν

κ

∂K0

∂z′
dz′

]
Yndz

+

∞∑
m=0

Bm

[
1

y2n

∫ 1/2

−1/2
ZmYndz

][
E2λm

(
λm − µn

Pr

)
− 1

E2
(
λm − µn

Pr

)2
+ 1

e−
E
Prµnτ

+

(
1− E2λm

(
λm − µn

Pr

))
cos(τ) + E

(
2λm − µn

Pr

)
sin(τ)

E2
(
λm − µn

Pr

)2
+ 1

e−Eλmτ

]
.

(B 19)
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The general solution for M can now be written as

M(z, τ) =

∞∑
n=0

MnYn(z)e−
E
Prµnτ + Pr

∫ z

−1/2

ν

κ

∂K0

∂z′
dz′

−Pr
∞∑
n=0

[
1

y2n

∫ 1/2

−1/2

(∫ z

−1/2

ν

κ

∂K0

∂z′
dz′

)
Yn(z)dz

]
Yn(z)e−

E
Prµnτ

+

∞∑
n=0

∞∑
m=0

Bm

[
1

y2n

∫ 1/2

−1/2
Zm(z)Yn(z)dz

][
E2λm

(
λm − µn

Pr

)
− 1

E2
(
λm − µn

Pr

)2
+ 1

e−
E
Prµnτ

+

(
1− E2λm

(
λm − µn

Pr

))
cos(τ) + E

(
2λm − µn

Pr

)
sin(τ)

E2
(
λm − µn

Pr

)2
+ 1

e−Eλmτ

]
Yn(z).

(B 20)

The first term of (B 20) corresponds to adjustment from the initial state, the second
and third correspond to adjustment towards the final steady-state solution and the last
double sum term represents the effects of the velocity adjustment with the cos τ and sin τ
terms describing the inertial waves generated during the adjustment phase.

When ν = κ, (3.21) and (B 8) have the same form and hence Zn = Yn, λn = µn and
zn = yn. Therefore, we can write

Cn(τ) =
Pr

z2n

[
1− e− E

Prλnτ
][∫ 1/2

−1/2
K0Zndz

]
+Bn

[
E2λ2n

(
1− 1

Pr

)
− 1

E2λ2n
(
1− 1

Pr

)2
+ 1

e−
E
Prλnτ

+

(
1− E2λ2n

(
1− 1

Pr

))
cos τ + Eλn

(
2− 1

Pr

)
sin τ

E2λ2n
(
1− 1

Pr

)2
+ 1

e−Eλnτ

]
+Mne

− E
Prλnτ .

(B 21)

For Pr = 1, this becomes

Cn(τ)=
1

z2n

[
1− e−Eλnτ

][∫ 1/2

−1/2
K0Zndz

]
+[(Bn cos τ+Eλn sin τ−1)+Mn] e−Eλnτ.(B 22)

Appendix C. Numerical Solutions for the Structure Functions

For general ν and κ we need to solve for the functions K0, Zn and Yn and eigenvalues
λn and µn numerically. The equations and boundary conditions are

(
ν (νK ′0)

′′)′
= −K0 − ζ, ζ ∈ [−1/

√
4E, 1/

√
4E],

(νK ′0)′′ = 0, ζ = ±1/
√

4E,

K ′0 = 0, ζ = ±1/
√

4E,

(C 1)

for K0(ζ) and 
(νZ ′n)

′
= −λnZn, z ∈ [−1/2, 1/2],

Z ′n = 0, z = ±1/2,

Zn = 1, z = 1/2,

(C 2)

and 
(κY ′n)

′
= −µnYn, z ∈ [−1/2, 1/2],

Y ′n = 0, z = ±1/2,

Yn = 1, z = 1/2,

(C 3)
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for Zn(z) and Yn(z). We choose the boundary conditions Zn,Yn = 1 at z = 1/2 to
normalise our eigenfunctions. The constants zn and yn can be calculated by numerical
integration using the solutions.

We now consider a function g(σ) ∈ Rm, where σ ∈ Rm for some positive integer m.
We seek the roots of g, i.e. the solutions σ = σ∗ satisfying g(σ) = 0. We can solve for
σ∗ numerically using the Newton-Raphson iteration,

σn+1 = σn −
[
∂g

∂σ
(σn)

]−1
· g(σn), (C 4)

for some suitable chosen initial guess σ0. The Jacobian matrix, given by[
∂g

∂σ

]
ij

=
∂gi
∂σj

, (C 5)

can be approximated numerically to second order by[
∂g

∂σ

]
ij

≈ 1

2δ
[gi(σ + δej)− gi(σ − δej)] , (C 6)

for some small δ requiring 2m evaluations of g. We now iterate equation C 4 until a
suitable convergence condition is met; σ0 is chosen near the root such that the method
converges. We say that the method has converged once

|g(σn)| < ε∗, (C 7)

for small parameter ε∗.
We now write equations C 1 - C 3 as first order systems of the form

y′ = h(y, z), (C 8)

for solution vector y, function h and parameter z. We write equation C 1 as
K0

νK ′0
(νK ′0)

′

ν (νK ′0)
′′


′

=


[νK ′0] /ν

(νK ′0)
′[

ν (νK ′0)
′′]
/ν

−K0 − ζ

 , (C 9)

with initial condition 
K0

νK ′0
(νK ′0)

′

ν (νK ′0)
′′

 =


σ1
0
σ2
0

 , (C 10)

at ζ = −1/
√

4E. We now integrate from ζ = −1/
√

4E to ζ = 1/
√

4E using a Runge-
Kutta method and define

g(σ1, σ2) =

(
νK ′0

ν(νK ′0)′′

)∣∣∣∣
ζ=1/

√
4E

. (C 11)

We can see that finding a numerical solution for K0 requires us to calculate the correct
initial conditions (σ1, σ2) such that the boundary conditions at ζ = 1/

√
4E are satisfied.

These conditions correspond to g = 0 so we can solve for (σ1, σ2) iteratively using (C 4).
The solution for K0 is given by the solution using the value of σn once the convergence
condition has been met.



28 M. N. Crowe & J. R. Taylor

(a) (b)

(c) (d)

Figure 10: Vertical structure function, K0 as a function of z for E = 1 (a), 0.1 (b), 0.01
(c) and 0.001 (d) and ν = 11/8− 9/2z2.

We now write equations C 2 and C 3 as
Zn
νZ ′n
Yn
κY ′n


′

=


[νZ ′n] /ν
−λnZn
[κY ′n] /κ
−µnYn

 , (C 12)

with initial condition 
Zn
νZ ′n
Yn
κY ′n

 =


1
0
1
0

 , (C 13)

at z = 1/2 and integrate backwards in z. In order to satisfy the boudary conditions at
z = −1/2 we define

g(σ1, σ2) =

(
νZ ′n
κY ′n

)∣∣∣∣
z=−1/2

, (C 14)

where (σ1, σ2) = (λn, µn) and take σ such that g = 0. Therefore the solution σ = σ∗

determines the eigenvalues so we expect the components of g to be oscillatory with
infinitely many positive roots. We note that the first component of g depends only on λn
while the second depends only on µn. We can plot g1(λn) and g2(µn) and use the plots to
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(a) (b)

(c) (d)

Figure 11: Vertical structure function, K0 as a function of z for for E = 1 (a), 0.1 (b),
0.01 (c) and 0.001 (d) and ν = 1.

determine approximate values for the eigenvalues; these can be taken as starting values,
σ0, in a Newton-Raphson iteration using equation C 4. The solutions and eigenvalues are
given once the method has converged.

We now consider a KPP-like profile for κ = ν where ν is given by

ν =
11

8
− 9

2
z2. (C 15)

Numerical solutions for K0 with E = 1, 0.1, 0.01 and 0.001 are shown in Figure 10. We
can see that the upwelling, which is proportional to νK ′0, is stronger for smaller E, and,
in the small-E limit, the along front velocity, which is proportional to K ′0, approaches the
linear thermal wind profile. The cross front velocity, proportional to (νK ′0)′, is greatest
at the surface and for small E is confined to thin boundary layers near the surfaces.

Figure 11 shows the solutions for K0 with E = 1, 0.1, 0.01 and 0.001 in the case where
ν = 1. W can see that the form of the solutions is similar to the KPP case with a high
horizontal surface velocity and strong upwelling in the centre of the vertical domain.
For small E, the boundary layers are thicker for the constant case as the viscosity in
this region is higher and the upwelling is approximately constant throughout the vertical
domain. In both cases the along front velocity approaches the linear thermal wind profile
for small E.

Figure 12 shows a comparison between the first eight vertical harmonics, Zn, for the
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(a) (b)

(c) (d)

Figure 12: (a) Zn for ν = 1 and n ∈ {0, 1, 2, 3}. (b) Zn for ν = 1 and n ∈ {4, 5, 6, 7}.
(c) Zn for ν = 11/8 − 9/2z2 and n ∈ {0, 1, 2, 3}. (d) Zn for ν = 11/8 − 9/2z2 and
n ∈ {4, 5, 6, 7}. We note that if κ = ν then Yn = Zn.

constant and KPP viscosity profiles. We note that Yn = Zn when κ = ν. We can see
that the magnitude of the osillations in the interior is smaller for the KPP case as the
viscosity is higher here compared with the region near the boundary; we can think of
this as stronger damping.
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