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Submesoscale processes along coastal boundaries provide a potential mechanism for the
dissipation of mesoscale kinetic energy in the ocean. Since these processes occur on scales
not generally resolved by global ocean models, a physically motivated parametrisation is
required to accurately describe their effects. Submesoscale dynamics are characterised by
strong turbulent mixing, nonlinearity and topographic effects; all of which significantly
modify the flow. A major component of the submesoscale boundary response to mesoscale
forcing is the Kelvin – or coastally trapped – wave field which has been shown to
transport energy over large distances. This paper thus examines the influence of vertical
mixing, nonlinearity and steep slope topography on baroclinic Kelvin waves with the
aim of assessing the importance of these effects. We consider the limit of a steep coastal
boundary, weak mixing and weak nonlinearity and perform an asymptotic analysis to
determine the modification of the classical Kelvin wave solution by these effects. Linear
and nonlinear solutions are given and different mixing limits are discussed and compared
with previous work. We find that vertical mixing acts to damp slowly propagating Kelvin
waves while nonlinearity can cause wave breaking which may be important for fast waves.
Steep slope topography acts to modify the wave speed and structure consistent with
previous work.

1. Introduction

Determining the energy balance for the ocean remains an important problem with
implications for the global circulation and long term variability (Penduff et al. 2011).
Since an understanding of interannual to centennial variability is required for climate
predictions, an accurate model for the ocean energy budget is vital for addressing climate
change (Stocker et al. 2013). Much of the kinetic energy in the ocean resides within
mesoscale features, balanced motions with horizontal length scales on the order of 10 to
100 km (Ferrari & Wunsch 2009). The processes by which mesoscales are energised by
large scale winds are fairly well understood. However, the balanced motion of mesoscales,
which act to transfer energy to larger scales, cannot fully account for this energy uptake.
This suggests that significant amounts of energy are being lost to small scale, unbalanced
motions (Dewar et al. 2011). This dissipation of mesoscale energy occurs on scales that
are not typically resolved by global ocean simulations; hence a physically motivated
parametrisation is required to describe the effects of these processes.

Internal waves are a candidate for the extraction of mesoscale energy; however their
spontaneous generation within the ocean interior is weak (Vanneste & Yavneh 2004;
Shakespeare & Hogg 2017) suggesting that they are not the primary mechanism for
energy transfer. A second candidate is submesoscale motions where the term ‘subme-
soscale’ refers to processes occurring on horizontal scales from 100 m to 10 km which are
characterised by order unity Rossby numbers (Thomas et al. 2008; McWilliams 2016).
These partially unbalanced motions have been observed near the ocean surface and
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boundaries and can form a forward cascade where energy is transferred to increasingly
small scales and eventually dissipated by turbulent mixing (Capet et al. 2008b,a; D’Asaro
et al. 2011). Therefore submesoscale processes occurring near the ocean surface and
boundaries are likely to be important for determining the mesoscale energy loss (Arbic
et al. 2009; Dewar et al. 2011; McWilliams 2016). Other potentially important effects for
the energy budget include the relative wind stress at the ocean surface (Duhaut & Straub
2006), deep-ocean bottom drag (Sen et al. 2008) and topographic lee wave generation
(Nikurashin & Ferrari 2010).

An important feature of submesoscales is an elevated level of small scale turbulence
(D’Asaro et al. 2011; Callies et al. 2015, 2016; Mashayek et al. 2017), generated by a
variety of processes including boundary forcing, bottom drag, internal wave breaking
and shear instabilities (Large et al. 2011). Turbulence acts to transfer energy down-
scale until it is dissipated by viscous forces at the Kolmogorov scale (Vassilicos 2015).
This turbulent mixing plays an significant role in various processes such as frontogenesis
(Gula et al. 2014; McWilliams 2017; Crowe & Taylor 2018, 2019b), restratification (Fox-
Kemper et al. 2008) and submesoscale instabilities in the surface mixed layer (Young &
Chen 1995; Skyllingstad & Samelson 2012; Crowe & Taylor 2019a) where it is commonly
parametrised using an eddy viscosity (Large et al. 2011). Due to the small vertical scales
of submesoscale processes – which are usually on the order of 10−100 m – vertical mixing
is especially important.

In addition to determining global energy balances, recent work has highlighted the im-
portance of understanding the processes which govern the sources and sinks of mesoscale
eddy energy for the development of eddy parametrisations (Marshall & Adcroft 2010;
Poulsen et al. 2019; Jansen et al. 2019). Bachman (2019), for example, parameterised the
backscatter of eddy energy to the mean flow by modelling the transfer of potential energy
to kinetic energy by baroclinic turbulence. A theoretical understanding of the processes
unresolved by global ocean models is thus essential for the formulation of physically
motivated eddy parametrisations.

While there has been much work focusing on submesoscale processes near the ocean
surface, submesoscale generation near the bottom and lateral boundaries has been much
less studied. Work by Dewar et al. (2011) and Gula et al. (2016) has shown that walls
and bottom topography can also generate submesoscale features which may provide a
significant sink of interior mesoscale energy. The processes and energy pathway are,
however, poorly understood.

Recently, Deremble et al. (2017) derived a simple model which coupled large scale
interior quasi-geostrophic motion with the boundary response due to vertical walls. They
demonstrated a close agreement with high resolution primitive equation simulations and
argued that boundary dynamics naturally dissipate balanced energy so represent a means
of closing the oceanic mesoscale energy budget. The submesoscale response in this model
was entirely captured by the Kelvin wave dynamics at the boundary (see also Dewar
& Hogg 2010; Hogg et al. 2011). An understanding of Kelvin waves in a regime where
turbulent mixing, topography and nonlinearity all play an important role is therefore
likely to be vital for accurately parametrising submesoscale boundary effects.

Unstratified shallow water models have been used extensively to study nonlinear
wave dynamics. Smith (1972), for example, used a shallow water model to study the
evolution of barotropic Kelvin waves along a straight coastline with offshore topography.
Topography was shown to generate weak dispersion and to modify the non-dispersive
wave speed. This topographic dispersion was balanced by nonlinear effects allowing the
existence of solitary wave solutions. Later, Boyd (1980) considered the nonlinear evolution
of equatorial Kelvin waves using a shallow water model. The wave amplitude was found
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to satisfy Hopf’s equation with breaking wave solutions that may be relevant to El Niño
events in the equatorial Pacific ocean.

When studying baroclinic Kelvin waves, solutions are often expanded in terms of an
infinite sum of linearly independent vertical modes as discussed for a general stratified
ocean layer by McCreary & Lighthill (1981). In the linear, unforced problem, the am-
plitudes of each vertical mode can be easily determined by projecting the system onto
the required mode. The inclusion of forcing terms such as vertical mixing, topography
and nonlinearity, however, couples these modes so the amplitudes of each mode cannot
be independently determined. Martinsen & Weber (1981) and Davey et al. (1983)
considered linear baroclinic Kelvin waves in the presence of vertical mixing by making the
assumption that the vertical viscosity was depth-dependent and inversely proportional to
the background stratification profile. Under this assumption the vertical modes separate
allowing simple solutions to be found. Vertical mixing was found to damp all horizontal
wavenumbers equally while also modifying the speed and phase of the wave as well as
the propagation direction in the case of high Prandtl number.

The effect of topography on shelf waves has been studied by Johnson & Rodney (2011)
and Rodney & Johnson (2012, 2014, 2015) using both numerical and analytic approaches.
It was shown that changes in topography can modify the speed of wave propagation and
even prevent the propagation of long waves. In the case where short wave reflection is
also not possible the wave energy was found to be transferred to small scale eddies.

Romea & Allen (1984) used an asymptotic approach to consider the action of bottom
friction and topography on baroclinic Kelvin modes in the case of linear, long waves.
Under the assumption that the Ekman number was small, solutions were presented for
the limits of steep and shallow slopes with the effects of bottom friction and topography
entering as a small correction to the classical Kelvin wave solution. In the steep slope
limit, topography was shown to modify the wave speed with the speed change determined
by the slope gradient. In the case of a constant slope gradient, the speed was found to
be unchanged whereas a convex or concave slope were found to respectively increase or
decrease the wave speed.

We proceed here using the asymptotic approach of Romea & Allen (1984) to determine
the effects of vertical mixing, steep slope topography and weak nonlinearity on Kelvin
waves. We also relax the long wave assumption and allow superinertial solutions with
short wavelengths. Martinsen & Weber (1981) showed that the barotropic mode is not
influenced by vertical mixing and so we consider only baroclinic modes, making the
rigid lid assumption of no surface displacement. While an asymptotic approach imposes
restrictions on the maximum size of the turbulent Ekman number, slope gradient and
Rossby number, it allows us to use mixing profiles, slope geometries and stratifications
with arbitrary depth dependence. Since turbulent mixing acts on both the momentum
and buoyancy we include both effects and allow the Prandtl number describing the ratio
of the mixing rates to be arbitrary (Davey et al. 1983).

We find that topography, mixing and nonlinearity all play an important role in the
evolution of Kelvin waves by modifying the wave speed and offshore structure as well
as the long time evolution of the amplitude. Vertical mixing acts to oppose nonlinear
wave breaking however breaking solutions are shown to be possible if the nonlinearity
is sufficiently strong. Using typical submesoscale ocean parameters we estimate that
nonlinearity may play an important role in the evolution of Kelvin waves with low vertical
mode number whereas modes with smaller vertical scales may be quickly damped by
turbulent mixing.

We begin in Section 4 by considering the case of linear Kelvin waves and derive
asymptotic solutions for the pressure field, modified by vertical mixing and topographic
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Figure 1: The flow geometry with sloping boundary y = l(z), Coriolis parameter f ,
viscosity ν, diffusivity κ and stratification with vertical buoyancy gradient N2(z). The
depth is given by H while L describes the typical scale of horizontal motion. A constant
background flow, U , in the x direction is also included.

effects. Various limits are discussed in relation to previous work. In Section 5 we consider
the full nonlinear problem and derive a nonlinear evolution equation for the amplitude.
Solutions to this equation are discussed in Section 6 and realistic values for the parameters
are estimated in Section 7. Finally we discuss our conclusions in Section 8.

2. Setup

We consider a rotating, incompressible fluid layer bounded above and below by rigid
boundaries and rotating about the vertical (z) axis. To describe the effects of varying
density, we make the Boussinesq approximation by assuming that density variations
are small compared to a reference value. Density variations are split into an imposed
background stratification which is assumed to depend only on depth and an evolving
buoyancy field. The buoyancy field is described by a single scalar equation and defined
as b = −gρ′/ρ0 where ρ0 is a reference density and ρ′ describes departures from ρ0 with
ρ′ � ρ0.

The coastline is represented by a sloping boundary applied at y = l where y is the
offshore coordinate and alongshore (x) variations in topography are assumed to occur
on sufficiently large scales that we can take l = l(z). Boundary conditions of vanishing
normal velocity are applied at y = l. We note that imposing a sloping sidewall, y = l(z),
is equivalent to imposing a sloping bottom, z = h(y). Here we use the sloping sidewall
approach since, in steep slope limit, (small l′(z) or large h′(y)) mapping the surface
y = l(z) back to a vertical boundary is more straightforward than mapping z = h(y) to
either a vertical or horizontal wall. We also introduce a depth-independent background
flow which we assume also varies over large scales and hence can be taken as constant. By
the boundary condition at y = l, this background flow must be parallel to the coastline.

Finally, the effects of turbulent mixing on the velocity and buoyancy fields are described
using vertical diffusion terms where the depth-dependent viscosity and diffusivity describe
the bulk effects of the mixing. The turbulent viscosity ν and turbulent diffusivity κ
can vary over several orders of magnitude but will typically be within the range of
10−4 − 10−2m2s (Large et al. 2011) with the ratio of these quantities, the turbulent
Prandtl number, being order 1 (Venayagamoorthy & Stretch 2010).

In order to isolate the effects of vertical mixing within the fluid layer, we neglect
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the bottom drag and associated bottom boundary layer by applying inviscid boundary
conditions (Martinsen & Weber 1981). The effects of bottom drag and Ekman pumping
were extensively studied by (Romea & Allen 1984) and so we return to this point in
Section 8. Our dimensional problem setup is shown in Fig. 1.

We now non-dimensionalise the horizontal coordinates (x, y) by the Rossby radius
of deformation LR = NH/f , the vertical coordinate z by the depth H, the horizontal
velocity (u, v) by a typical velocity scale V , the vertical velocity w by fV/N , the buoyancy
b by V N , the pressure p by V NH, the time t by 1/f , the alongshore background flow U
by NH and the horizontal extent of the boundary l by L. Here N is the characteristic
scale of the buoyancy frequency describing the vertical stratification and f is the Coriolis
parameter.

We define the Rossby number as Ro = V/(fLR) = V/(NH) and write ε =
√
f/N

so the ratio of the depth to the Rossby radius of deformation is given by ε2. Finally we
define the Ekman number by E = ν/(fH2) and Prandtl number by Pr = ν/κ where ν
and κ are characteristic scales for the turbulent viscosity and diffusivity respectively. We
note that ν and κ may be chosen as, for example, a depth-average or maximum value of
ν and κ. Our non-dimensional equations are given by[

∂

∂t
+ U

∂

∂x

]
u+Ro

[
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
− v = −∂p

∂x
+ EDuu, (2.1a)[

∂

∂t
+ U

∂

∂x

]
v +Ro

[
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
+ u = −∂p

∂y
+ EDuv, (2.1b)

ε4
[
∂

∂t
+ U

∂

∂x

]
w + ε4Ro

[
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
= b − ∂p

∂z
+ ε4EDuw, (2.1c)[

∂

∂t
+ U

∂

∂x

]
b+Ro

[
u
∂b

∂x
+ v

∂b

∂y
+ w

∂b

∂z

]
= −N 2 w +

E

Pr
Dbb, (2.1d)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1e)

where N 2 = N 2(z) is the square of the buoyancy frequency non-dimensionalised by N2,
hence in the case of constant buoyancy frequency we can take N 2 = 1. The vertical
mixing terms are given by

Du =
∂

∂z

[
Du

∂

∂z

]
, Db =

∂

∂z

[
Db

∂

∂z

]
, (2.2)

where Du = ν(z)/ν and Db = κ(z)/κ are order 1 functions of z describing the vertical
structure of the turbulent viscosity and diffusivity respectively. Our coastal boundary
condition is

v = ε2
L

H

∂l

∂z
w at y = ε2

Ll

H
. (2.3)

We now take ε� 1 and assume that NH/f � L� H by taking H/L = O(ε). Therefore
the boundary extent Ll is small compared to the Rossby radius of deformation but large
compared to the depth. We call this limit the ‘steep slope’ limit due to the assumption
of L � LR and note that ε describes the aspect ratio of the sloping boundary in the
nondimensional formulation as L/LR = O(ε). Writing εLl/H = δ(z) ∼ O(1) we have

v = εδ′(z)w at y = εδ(z), (2.4)

where δ′(z) = ∂δ/∂z. This is the steep-slope boundary condition used by Romea & Allen
(1984). On the top and bottom surfaces we make the rigid lid approximation that the
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vertical velocity vanishes

w = 0 at z = −1, 0, (2.5)

and we assume that perturbations do not grow as y →∞.

3. Asymptotic analysis

We proceed by assuming that the Rossby and Ekman numbers are small by writing

(Ro,E) = ε(R, E), (3.1)

where we take E ∼ O(1) and consider two cases for R: the linear case of R � 1 and the
weakly nonlinear case of R ∼ O(1). Note that for typical ocean parameters we might
expect E � Ro however we retain possible dissipative effects by assuming both are O(ε)
and return to this point in Section 7, where we find that, due to a difference in the size
of the coefficient, both mixing and nonlinearity can be similar order effects. Correct to
O(ε) Eq. (2.1) can be written as[

∂

∂t
+ U

∂

∂x

]
u+ εRFu − v = −∂p

∂x
+ εE Duu, (3.2a)[

∂

∂t
+ U

∂

∂x

]
v + εRFv + u = −∂p

∂y
+ εE Duv, (3.2b)

0 = b − ∂p

∂z
, (3.2c)[

∂

∂t
+ U

∂

∂x

]
b+ εRFb = −N 2 w +

εE
Pr
Dbb, (3.2d)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.2e)

where we note that the vertical momentum equation has reduced to hydrostatic balance
and the nonlinear forcing terms are given by

Fu = u
∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
, Fv = u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
, Fb = u

∂b

∂x
+ v

∂b

∂y
+w

∂b

∂z
. (3.3)

Defining advection-diffusion operators as

Lu =

[
∂

∂t
+ U

∂

∂x
− εE ∂

∂z

(
Du(z)

∂

∂z

)]
, (3.4)

and

Lb =

[
∂

∂t
+ U

∂

∂x
− εE
Pr

∂

∂z

(
Db(z)

∂

∂z

)]
, (3.5)

we can write Eq. (3.2) as(
1 + L2

u

)
u =−

(
∂p

∂y
+ Lu

∂p

∂x

)
− εR (Fv + LuFu) , (3.6a)

(
1 + L2

u

)
v =

(
∂p

∂x
− Lu

∂p

∂y

)
+ εR (Fu − LuFv) , (3.6b)

w = − 1

N 2

[
Lb
∂p

∂z
+ εRFb

]
, (3.6c)

b =
∂p

∂z
, (3.6d)
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Figure 2: (a) The dimensionless setup in (x, y, z) space. The boundary conditions are
applied at z = −1, 0 and y = εδ(z). (b) The dimensionless setup in (x, λ, z) space where
the boundary conditions are applied at z = −1, 0 and λ = 0.

which can be combined using mass conservation to give an equation for the pressure
forced by the nonlinear terms. We have

(
1 + L2

u

) ∂
∂z

[
1

N 2
Lb
∂p

∂z

]
+ Lu

(
∂2

∂x2
+

∂2

∂y2

)
p =

− εR
[
−
(
∂Fu
∂y
− ∂Fv

∂x

)
+ Lu

(
∂Fu
∂x

+
∂Fv
∂y

)
+
(
1 + L2

u

) ∂
∂z

[
Fb
N 2

]]
, (3.7)

subject to

Lb
∂p

∂z
= −εRFb at z = −1, 0, (3.8)

and

∂p

∂x
− Lu

∂p

∂y
= −ε(1 + L2

u)

[
δ′

N 2
Lb
∂p

∂z

]
− εR (Fu − LuFv) at y = εδ, (3.9)

correct to O(ε). Note that in the case of ε = 0 this reduces to the classical Kelvin wave
problem.

Following Romea & Allen (1984) we define λ to be the offshore distance from the
coastal boundary and perform the coordinate transformation

λ = y − εδ(z), (3.10)

where derivatives transform as

∂

∂y
→ ∂

∂λ
,

∂

∂z
→ ∂

∂z
− εδ′ ∂

∂λ
. (3.11)

The effect of this transformation is to map the sloping wall y = εδ(z) to a vertical
boundary. Therefore the transformed slope boundary condition are applied at λ = 0 and
the effects of the slope enter as new terms in the governing equations. Fig. 2 shows the
dimensionless geometry of the original and transformed domains.

Eq. (3.7) can now be written correct to O(ε) as

(
1 + L2

u

)( ∂

∂z
− εδ′ ∂

∂λ

)[
1

N 2
Lb
(
∂p

∂z
− εδ′ ∂p

∂λ

)]
+ Lu

(
∂2

∂x2
+

∂2

∂λ2

)
p =

− εR
[
−
(
∂Fu
∂λ
− ∂Fv

∂x

)
+ Lu

(
∂Fu
∂x

+
∂Fv
∂λ

)
+
(
1 + L2

u

) ∂
∂z

[
Fb
N 2

]]
, (3.12)
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subject to

Lb
(
∂p

∂z
− εδ′ ∂p

∂λ

)
= −εRFb at z = −1, 0, (3.13)

and

∂p

∂x
− Lu

∂p

∂λ
= −ε(1 + L2

u)

[
δ′

N 2
Lb
∂p

∂z

]
− εR (Fu − LuFv) at λ = 0. (3.14)

We note that Lu and Lb only contain λ derivatives at O(ε2) or higher so here are
unchanged from Eqs. (3.4) and (3.5).

Our model can be viewed as an extension of the steep slope model of Romea & Allen
(1984) and differs through the inclusion of vertical mixing and weak nonlinearity and
the neglect of the bottom Ekman layer. Additionally we have relaxed the long wave
assumption by taking both x and y derivatives to be O(1). Taking E = R = 0 and
assuming a long wave limit recovers the steep slope model considered by Romea & Allen
(1984) in the case of vanishing bottom drag. Similarly, taking R = δ = 0 and Du = Db =
1/N 2 recovers the vertical mixing model of Martinsen & Weber (1981) and Davey et al.
(1983) where Martinsen & Weber (1981) also assumed that Pr →∞.

We now consider two cases: the linear case of R � 1 and the weakly nonlinear case of
R = O(1).

4. The linear problem

We begin by considering the case of very small Rossby number, Ro � ε, by setting
R = 0. In this case the nonlinear terms in Eqs. (3.12) to (3.14) vanish and the pressure
field satisfies the linear problem(

1 + L2
u

)( ∂

∂z
− εδ′ ∂

∂λ

)[
1

N 2
Lb
(
∂p

∂z
− εδ′ ∂p

∂λ

)]
+ Lu

(
∂2

∂x2
+

∂2

∂λ2

)
p = 0, (4.1)

subject to

∂p

∂z
= εδ′

∂p

∂λ
at z = −1, 0, (4.2)

and
∂p

∂x
− Lu

∂p

∂λ
= −ε(1 + L2

u)

[
δ′

N 2
Lb
∂p

∂z

]
at λ = 0. (4.3)

Following Romea & Allen (1984) we decompose the pressure field into a sum of modes
of alongshore wavenumber k writing

p =

∞∑
n=1

Ãn(k)φ(n)(λ, z, k) exp[i(kx− ω(n)(k) t)], (4.4)

where φ(n) are functions describing the vertical and offshore structure of a given mode
and ω(n) are the corresponding frequencies. A full solution for p can be constructed by a
weighted integral over all alongshore wavenumbers so

p =

∞∑
n=1

[
1

2π

∫ ∞
−∞

Ãn(k)φ(n)(λ, z, k) exp[i(kx− ω(n)(k) t)] dk

]
. (4.5)

By linearity, we need only consider a single mode of the form

p = φ(λ, z, k) exp[i(kx− ω(k) t)], (4.6)
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where we have dropped the (n) superscripts on the structure function φ and frequency
ω. We now expand φ and ω in powers of ε as

(φ, ω) = (φ0, ω0) + ε (φ1, ω1) +O(ε2). (4.7)

Noting that

∂p

∂t
= −i

(
ω0φ0 + ε(ω1φ0 + ω0φ1) +O(ε2)

)
exp[i(kx− ω(k)t)], (4.8)

we write

A0 = i(kU − ω0), (4.9)

so

Lup = [A0 − ε(iω1 + EDu)] (φ0 + εφ1) exp[i(kx− ω(k)t)] +O(ε2), (4.10)

and

Lbp =

[
A0 − ε

(
iω1 +

E
Pr
Db
)]

(φ0 + εφ1) exp[i(kx− ω(k)t)] +O(ε2). (4.11)

We now solve for the first two orders in ε.

4.1. O(1) balance

At leading order in ε we recover the usual baroclinic Kelvin wave system (Wang &
Mooers 1976)

A0

(
1 +A2

0

) ∂
∂z

[
1

N 2

∂φ0
∂z

]
+A0

(
−k2 +

∂2

∂λ2

)
φ0 = 0, (4.12)

subject to

∂φ0
∂z

= 0 at z = −1, 0, (4.13)

and

ikφ0 −A0
∂φ0
∂λ

= 0 at λ = 0. (4.14)

Solving for φ0 and ω0 we have

φ
(n)
0 = exp

[
− λ

cn

]
Zn(z), (4.15)

and

ω
(n)
0 = k(U + cn), (4.16)

where we recall that a full solution for the pressure can be constructed by summing
over all vertical modes, n, and integrating over all alongshore wavenumbers, k. Here the
vertical structure functions Zn(z) and wave speeds cn satisfy

∂

∂z

[
1

N 2

∂Zn
∂z

]
= − 1

c2n
Zn, (4.17)

and

∂Zn
∂z

= 0 at z = −1, 0. (4.18)
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We note that for N 2 = 1 we have Zn = cos[nπz] and cn = 1/(nπ). The leading order
pressure is then given by

p0 =

∞∑
n=1

[
1

2π

∫ ∞
−∞

Ãn(k) exp [ik (x− (U + cn)t)] dk

]
exp

[
− λ

cn

]
Zn(z), (4.19)

where An can be determined from the initial conditions and f̃ denotes the Fourier
transform of f . Note that this result can be written as

p0 =

∞∑
n=1

An (x− (U + cn)t) exp

[
− λ

cn

]
Zn(z), (4.20)

using the frequency shift property of the Fourier transform.

4.2. O(ε) balance

Having determined the leading order solution, we can now solve for the O(ε) correction.
By linearity we will assume that

φ0 = φ
(n)
0 = exp

[
− λ

cn

]
Zn(z), (4.21)

and solve for (φ
(n)
1 , ω

(n)
1 ), the solution for (φ1, ω1) forced by φ

(n)
0 . A full solution for φ1

can then be formed by summing over all n as before.
The O(ε) system is

A0

(
1 +A2

0

) ∂
∂z

[
1

N 2

∂φ
(n)
1

∂z

]
+A0

(
−k2 +

∂2

∂λ2

)
φ
(n)
1 =

A0

(
1 +A2

0

) [ ∂
∂z

(
δ′

N 2

)
∂φ

(n)
0

∂λ
+ 2

δ′

N 2

∂2φ
(n)
0

∂z∂λ

]
+
E
Pr

(
1 +A2

0

) ∂
∂z

[
1

N 2
Db
∂φ

(n)
0

∂z

]
+

2A2
0

[
iω

(n)
1 + EDu

] ∂

∂z

[
1

N 2

∂φ
(n)
0

∂z

]
+ EDu

(
−k2 +

∂2

∂λ2

)
φ
(n)
0 , (4.22)

subject to

∂φ
(n)
1

∂z
= δ′

∂φ
(n)
0

∂λ
at z = −1, 0, (4.23)

and[
ik −A0

∂

∂λ

]
φ
(n)
1 = −

[
iω

(n)
1 + EDu

] ∂φ(n)0

∂λ
− δ′

N 2
A0

(
1 +A2

0

) ∂φ(n)0

∂z
at λ = 0.

(4.24)
A consequence of our coordinate transformation (Eq. (3.10)) is that the vertical boundary
condition, Eq. (4.23), is not homogeneous. This can be treated following Romea & Allen
(1984) by substituting

φ
(n)
1 = ψ

(n)
1 + δ

∂φ
(n)
0

∂λ
, (4.25)

where ψ
(n)
1 describes the correction to φ in the case of a vertical wall, δ = 0. The effect

of this substitution is to give a system with homogeneous boundary conditions on ψ
(n)
1

at the top and bottom boundary allowing us to expand ψ(n) as a sum of vertical modes.
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Substituting for φ
(n)
0 using Eq. (4.21) gives the system for ψ

(n)
1

A0

(
1 +A2

0

) ∂
∂z

[
1

N 2

∂ψ
(n)
1

∂z

]
+A0

(
−k2 +

∂2

∂λ2

)
ψ
(n)
1 =

[
2ik2ω

(n)
1 Zn+

E(1− k2c2n)
∂

∂z

[
1

N 2

∂

∂z

(
Db

Pr

∂2Zn
∂z2

)]
+
E(1 + k2c2n)

c2n

∂

∂z

(
Du

∂Zn
∂z

)]
exp

[
− λ

cn

]
, (4.26)

subject to

∂ψ
(n)
1

∂z
= 0 at z = −1, 0, (4.27)

and[
ik −A0

∂

∂λ

]
ψ
(n)
1 =

iω
(n)
1 Zn
cn

+

E
cn

∂

∂z

(
Du

∂Zn
∂z

)
+ ikcn

(
1− k2c2n

) δ′

N 2

∂Zn
∂z

at λ = 0. (4.28)

Since ψ
(n)
1 is forced by a range of vertical modes unless DuN 2 = DbN 2 = const.

(Martinsen & Weber 1981) and δ′ = 0 (Romea & Allen 1984), we expand as a sum of
vertical modes

ψ
(n)
1 =

∞∑
m=0

ψ
(n)
1m(λ)Zm(z), (4.29)

where Z0 = 1 describes the barotropic mode with corresponding eigenvalue c−2m = 0. In

order to determine the ψ
(n)
1m we now multiply our system by Zm and integrate vertically

between −1 and 0. Note that we have the orthogonality relation∫ 0

−1
ZnZm dz = z2mδnm, (4.30)

where the zm are normalisation constants. We obtain[
∂2

∂λ2
− µ2

mn

]
ψ
(n)
1m =

[
− 2kω

(n)
1

cn
δmn

+
2iE

(
1− k2c2n

)
Pr kc3n

σmn −
2iE

(
1 + k2c2n

)
kc3n

εmn

]
exp

[
− λ

cn

]
, (4.31)

subject to[
1 + cn

∂

∂λ

]
ψ
(n)
1m =

ω
(n)
1

kcn
δmn +

2iE
kcn

εmn +
1

cn

(
1− k2c2n

)
γmn at λ = 0, (4.32)

where

εmn = − 1

2z2m

∫ 0

−1

∂

∂z

(
Du

∂Zn
∂z

)
Zm dz, (4.33)

and

σmn =
c2n

2z2m

∫ 0

−1

∂

∂z

[
1

N 2

∂

∂z

(
Db

∂2Zn
∂z2

)]
Zm dz, (4.34)
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describe the effects of vertical mixing of momentum and buoyancy respectively,

γmn =
c2n
z2m

∫ 0

−1

[
δ′

N 2

∂Zn
∂z

]
Zm dz, (4.35)

describes the effects of a sloping boundary and

µ2
mn(k) =

1− k2(c2n − c2m)

c2m
, (4.36)

describes the offshore decay scale.
Integration by parts allows εmn to be written as

εmn =
1

2z2m

∫ 0

−1
Du

∂Zn
∂z

∂Zm
∂z

dz, (4.37)

showing that εnn is non-negative assuming a positive viscosity profile Du. Similarly γnn
may be written as

γnn =
c2n
2

∫ 0

−1
δ′′
[

1

N 2

∂Zn
∂z

]2
dz, (4.38)

so γnn = 0 for a linear slope profile, δ′ = const., and is positive/negative for a slope with
positive/negative curvature respectively. The coefficient σnn is not sign definite but will
typically be positive, assuming a stable stratification, N 2, and positive diffusivity profile,
Db. Negative values of σnn may occur if Db varies over scales smaller than those of the
oscillations of Zn.

We now solve Eqs. (4.31) and (4.32) for ψ
(n)
1m by considering three possible cases for

different values of m.

4.2.1. m = 0: The O(ε) barotropic mode

We begin by considering the barotropic correction to the leading order mode. The
barotropic correction has m = 0 so

µ2
0n = k2, (4.39)

and our system becomes[
∂2

∂λ2
− k2

]
ψ
(n)
10 =

2iE
kc2n

[
1

Pr

(
1− k2c2n

)
σ0n −

(
1 + k2c2n

)
ε0n

]
exp

[
− λ

cn

]
, (4.40)

subject to [
1 + cn

∂

∂λ

]
ψ
(n)
10 =

2iE
kcn

ε0n +
1

cn

(
1− k2c2n

)
γ0n at λ = 0, (4.41)

with solution

ψ
(n)
10 =

[
1 + |k|cn

cn
γ0n +

2iE
kcn(1− |k|cn)

ε0n

]
exp [−|k|λ] +

2iE
kcn

[
1

Pr
σ0n −

1 + k2c2n
1− k2c2n

ε0n

]
exp

[
− λ

cn

]
. (4.42)

4.2.2. m = n: The O(ε) correction to the nth baroclinic mode

Here we consider the pressure correction with the same vertical structure as the leading
order mode with which it is associated. In this case m = n and we have

µ2
nn =

1

c2n
, (4.43)
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so [
∂2

∂λ2
− 1

c2n

]
ψ
(n)
1n =

[
− 2kω

(n)
1

cn

+
2iE

(
1− k2c2n

)
Pr kc3n

σnn −
2iE

(
1 + k2c2n

)
kc3n

εnn

]
exp

[
− λ

cn

]
, (4.44)

subject to[
1 + cn

∂

∂λ

]
ψ
(n)
1n =

ω
(n)
1

kcn
+

2iE
kcn

εnn +
1

cn

(
1− k2c2n

)
γnn at λ = 0. (4.45)

This system is forced at its resonant frequency and hence has solution of the form

ψ
(n)
1n = Cnλ exp

[
− λ

cn

]
, (4.46)

where we have two equations for Cn allowing us to determine ω
(n)
1 through a consistency

condition. We have

−2Cn
cn

= −2kω
(n)
1

cn
+

2iE
(
1− k2c2n

)
Pr kc3n

σnn −
2iE

(
1 + k2c2n

)
kc3n

εnn, (4.47)

and

cnCn =
ω
(n)
1

kcn
+

2iE
kcn

εnn +
1

cn

(
1− k2c2n

)
γnn, (4.48)

therefore

ω
(n)
1 = −kγnn − iE

(
εnn +

1

Pr
σnn

)
, (4.49)

and

ψ
(n)
1n =

[
−k2γnn +

iE
kc2n

(
εnn −

1

Pr
σnn

)]
λ exp

[
− λ

cn

]
. (4.50)

4.2.3. m 6= n, m > 0: The O(ε) scattered modes

Finally we consider the scattered modes. We define the scattered modes to be those
baroclinic correction terms with a different vertical structure to the leading order mode
with which they are associated. In this case m 6= n, m > 0 so we have[

∂2

∂λ2
− µ2

mn

]
ψ
(n)
1m =

2iE
kc3n

[
1

Pr

(
1− k2c2n

)
σmn −

(
1 + k2c2n

)
εmn

]
exp

[
− λ

cn

]
, (4.51)

subject to [
1 + cn

∂

∂λ

]
ψ
(n)
1m =

2iE
kcn

εmn +
1

cn

(
1− k2c2n

)
γmn at λ = 0. (4.52)

This can be solved similarly to the case of m = 0 to obtain the solution

ψ
(n)
1m =

2iE
kcn

[(
1− k2c2n

)
σmn − Pr

(
1 + k2c2n

)
εmn

Pr (1− µ2
mnc

2
n)

]
exp

[
− λ

cn

]
+

1

kcn

[
2iEεmn + k(1− k2c2n)γmn

1− cnµmn

]
exp [−µmnλ] , (4.53)
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for µ2
mn > 0 and

ψ
(n)
1m =

2iE
kcn

[(
1− k2c2n

)
σmn − Pr

(
1 + k2c2n

)
εmn

Pr (1 + |µ2
mn|c2n)

]
exp

[
− λ

cn

]
+

1

kcn

[
2iEεmn + k(1− k2c2n)γmn

1 + icn|µmn|

]
exp [i|µmn|λ] , (4.54)

for µ2
mn < 0. We note that when µ2

mn < 0 the waves can propagate offshore and into
the interior ocean due to the wavelike term exp[i|µmn|λ]. Offshore propagation due to
mixing was discussed by Davey et al. (1983) and is also present in our solution (see
Section 4.5). The propagation we observe here can result, however, from either mixing
or topography so is likely due to a different mechanism. It requires µ2

mn < 0 so is only
possible for superinertial waves (kcn > 1) and will be examined in future work. This
effect was not observed by Romea & Allen (1984) due to their making the long wave
(small k) approximation.

4.3. Summary

We now present our full linear solution for the case of small Rossby number and discuss
some interesting limits with links to previous work. The full pressure field can be written
as

p =

∞∑
n=1

[∫ ∞
−∞

1

2π
Ãn(k)

[(
1− εδ

cn

)
φ
(n)
0 + εψ

(n)
1

]
×

exp

[
ik (x− (U + cn − εγnn) t)− εE

(
εnn +

1

Pr
σnn

)
t

]
dk

]
+O(ε2), (4.55)

where

φ
(n)
0 = exp

[
− λ

cn

]
Zn(z), (4.56)

and

ψ
(n)
1 =

∞∑
m=0

ψ
(n)
1m(λ)Zm(z), (4.57)

for ψ
(n)
1m given in Section 4.2. Vertical mixing acts to damp the modes by reducing the

amplitude exponentially with time as observed by Martinsen & Weber (1981) and Davey
et al. (1983). Additionally, vertical mixing modifies the shape of the modes by adding
terms with decay scale λ ∼ cn to the order ε pressure correction, these terms have
imaginary coefficients corresponding to spatially dependent phase shifts. These effects
are very similar to the those observed for the case of an Ekman layer as studied by
Romea & Allen (1984).

From Eq. (4.55), the vertical and offshore structure for a given alongshore wavenumber,
k, is given by

φ(n) =

(
1− εδ

cn

)
φ
(n)
0 + εψ

(n)
1 , (4.58)

correct to O(ε). We note that the real part of φ(n) is independent of E while the imaginary
part of φ(n) is directly proportional to E . Therefore we need only consider Re[φ(n)] and
Im[φ(m)]/E for various ε, δ, N 2, Pr, Du and Db. To illustrate these results we present a
simple example where the forms of Du and Db are chosen to represent elevated turbulence
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Figure 3: Re[φ(n)] for N 2 = exp(z), Du = Db = −(π/2) sin(πz), δ = −z, ε = 0.1, k = 1
and Pr = 1. We show the first 4 modes n = 1, 2, 3, 4.

within the layer (Large et al. 2011) while the form of N 2 is taken as an exponential
stratification where N 2 decays by around 60% over the layer depth (Wang & Mooers
1976). Specifically we take

N 2 = exp(z), (4.59)

and

Du = Db = −(π/2) sin(πz). (4.60)

We also choose the small parameter ε = 0.1 and set k = 1, corresponding to a wavelength
on the scale of the deformation radius, LR. Additionally we take Pr = 1 such that
the turbulent mixing of momentum and buoyancy occur at similar rate. While this
approximation is not necessarily true everywhere, it is often the case that Pr ≈ 1
(Venayagamoorthy & Stretch 2010). We now present Re[φ(n)] and Im[φ(m)]/E for a range
of vertical mode numbers n and slope profiles, δ.

Fig. 3 shows Re[φ(n)] for the first 4 mode numbers and a linear slope δ(z) = −z. Near
the boundary, disturbances decay approximately with the perpendicular distance from
the wall while over larger distances the stratification flattens the phase lines. Furthermore,
the reduction in magnitude for larger n suggests that the slope acts to suppress the
amplitude of pressure field and hence the alongshore velocity for high mode numbers.
We note that an effect of the slope is to induce an O(ε) offshore velocity (v) which is
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Figure 4: Im[φ(n)]/E for N 2 = exp(z), Du = Db = −(π/2) sin(πz), δ = −z, ε = 0.1,
k = 1 and Pr = 1. We show the first 4 modes n = 1, 2, 3, 4.

likely related to the decrease in alongshore velocity. Fig. 4 shows Im[φ(n)]/E for the same
mode number and slope. We can see that vertical mixing induces higher mode number
corrections to the nth mode. Additionally, the large amplitudes for higher n suggests
that vertical mixing acts more strongly on higher modes. This is consistent with our
observations in Section 7 that vertical mixing preferentially damps the highest order
modes.

Fig. 5 shows the first mode, Re[φ(1)], for a range of steep slope topographies. A notable
feature of the distorted modes is that the zero contour can intersect with the top surface,
this can significantly affect the form of the alongshore surface velocity by inducing sign
changes along the y direction. Note that since Im[φ(n)]/E only depends on δ though λ,
topographic effects appear only as a depth-dependent horizontal translation. Therefore,
since these effects appear predominately in the real part of φ(n), Im[φ(1)]/E is not shown
here.

4.4. The amplitude evolution

Using the dispersion relation

ω(n) = k(U + cn − εγnn)− iε E
(
εnn +

1

Pr
σnn

)
, (4.61)
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(a) δ(z) = 0 (b) δ(z) = −z

(c) δ(z) = 3z2/2 (d) δ(z) = 3
√
|z|/4

Figure 5: The n = 1 mode Re[φ(1)] for N 2 = exp(z), Du = Db = −(π/2) sin(πz), ε = 0.1,
k = 1 and Pr = 1. We show a range of slope geometries δ(z) = 0, −z, 3z2/2, 3

√
|z|/4.

correct to O(ε) we can determine an evolution equation for the amplitude, An, as

∂An
∂t

+ (U + cn − εγnn)
∂An
∂x

= −E
(
εnn +

1

Pr
σnn

)
An, (4.62)

where we have substituted E = ε E . This equation can be solved as the product of a
travelling wave and exponential decay

An = Bn (x− (U + cn − εγnn) t) exp

[
−E

(
εnn +

1

Pr
σnn

)
t

]
, (4.63)

for some function Bn determined by initial conditions. We note that perturbations decay
on a timescale of

t ∼ 1

E (εnn + σnn/Pr)
, (4.64)

corresponding to a distance of

x ∼ U + cn − εγnn
E (εnn + σnn/Pr)

. (4.65)
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4.5. The decoupled modes case

One particularly simple example which illustrates some of the effects of vertical mixing
is the case of δ = 0 and DuN 2 = DbN 2 = 1. Here we have γmn = 0 and

εmn = σmn =
1

2c2n
δmn, (4.66)

so the vertical modes decouple giving that

φ
(n)
1 =

iE
2kc4n

(
1− 1

Pr

)
y exp

[
− y

cn

]
Zn(z), (4.67)

and hence

φ(n) = φ
(n)
0 + εφ

(n)
1 +O(ε2) =

[
1 +

iεE
2kc4n

(
1− 1

Pr

)
y

]
exp

[
− y

cn

]
Zn(z)+O(ε2). (4.68)

We note that due to the decoupling of the modes, we do not observe the high mode
number corrections from mixing effects seen in Fig. 4. Eq. (4.68) can be rewritten as

φ(n) = exp

[
− y

cn

(
1− iE

2kc3n

[
1− 1

Pr

])]
Zn(z) +O(ε2), (4.69)

with the complex exponential dependence corresponding to decaying offshore ocsillations
as discussed in Davey et al. (1983) and Martinsen & Weber (1981). The full pressure field
can be written as

p =

∞∑
n=0

[∫ ∞
−∞

1

2π
Ãn(k) exp

[
− y

cn

(
1− iE

2kc3n

[
1− 1

Pr

])]
Zn(z)×

exp

[
ik (x− (U + cn) t)− E

2c2n

(
1 +

1

Pr

)
t

]
dk

]
+O(ε2), (4.70)

where we note that all wavenumbers for a given vertical mode number decay at the same
rate, given by

t ∼ 2c2n
E

(
1 +

1

Pr

)−1
. (4.71)

In the case of Pr = ∞ we recover the weak mixing limit of Davey et al. (1983) and
Martinsen & Weber (1981). Note that it was also shown (Martinsen & Weber 1981)
that the wave speed is modified by a term proportional to the vertical Ekman number
squared, however in our formulation this effect would be O(ε2) so is not seen here. For
the case of Pr = 1 there are no offshore oscillations and we can write

p =

∞∑
n=1

[
An(x− (U + cn)t) exp

[
− y

cn
− E

c2n
t

]
Zn(z)

]
+O(ε2), (4.72)

consistent with the observations of Davey et al. (1983) that mixing with Pr = 1 does
not modify the speed or spatial structure of the wave.

5. The nonlinear problem

We now return to the weakly nonlinear problem with Ro = O(ε), corresponding to
R = O(1) in Eqs. (3.12) to (3.14). Since we can no longer invoke linearity, we cannot
restrict consideration to normal mode solutions and so instead we expand

p = p0 + εp1 +O(ε2), (5.1)
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and solve directly for p0 and p1. The leading order system is unchanged from the linear
case as Ro = εR = O(ε) so nonlinear effects only appear at O(ε) or higher. Therefore we
have leading order solution

p0 =

∞∑
n=1

An (x− (U + cn)t) exp

[
− λ

cn

]
Zn(z). (5.2)

For simplicity we assume that the leading order pressure consists of a single mode only,

p0 = p
(n)
0 = An (x− (U + cn)t) exp

[
− λ

cn

]
Zn(z), (5.3)

and since we do not have a slowly varying frequency component, ω1, in this formulation
we instead introduce a slow timescale T = εt and assume that An varies with T . Time
derivatives can now be expanded using a multiple scales assumption as

∂

∂t
→ ∂

∂t
+ ε

∂

∂T
. (5.4)

From p
(n)
0 we can calculate

u
(n)
0 =

1

cn
An exp

[
− λ

cn

]
Zn, (5.5a)

v
(n)
0 = 0, (5.5b)

w
(n)
0 =

cn
N 2

A′n exp

[
− λ

cn

]
Z ′n, (5.5c)

b
(n)
0 = An exp

[
− λ

cn

]
Z ′n. (5.5d)

Hence we can calculate the leading order nonlinear terms as

Fu0 = AnA
′
n exp

[
−2λ

cn

] [
1

c2n
Z2
n +

1

N 2
Z ′2n
]
, (5.6a)

Fv0 = 0, (5.6b)

Fb0 = AnA
′
n exp

[
−2λ

cn

] [
1

cn
ZnZ ′n +

cn
N 2
Z ′nZ ′′n

]
. (5.6c)

We note that Fv = 0 everywhere and Fb = 0 at z = −1, 0, hence Eq. (3.12)-Eq. (3.14)
reduce to

(
1 + L2

u

)( ∂

∂z
− εδ′ ∂

∂λ

)[
1

N 2
Lb
(
∂p

∂z
− εδ′ ∂p

∂λ

)]
+ Lu

(
∂2

∂x2
+

∂2

∂λ2

)
p =

− εR
[
−∂Fu
∂λ

+ Lu
∂Fu
∂x

+
(
1 + L2

u

) ∂
∂z

[
Fb
N 2

]]
, (5.7)

subject to

∂p

∂z
= εδ′

∂p

∂λ
at z = −1, 0, (5.8)

and

∂p

∂x
− Lu

∂p

∂λ
= −ε(1 + L2

u)

[
δ′

N 2
Lb
∂p

∂z

]
− εRFu at λ = 0, (5.9)
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where

Lu =

[
∂

∂t
+ U

∂

∂x
+ ε

∂

∂T
− εE ∂

∂z

(
Du(z)

∂

∂z

)]
, (5.10)

and

Lb =

[
∂

∂t
+ U

∂

∂x
+ ε

∂

∂T
− εE
Pr

∂

∂z

(
Db(z)

∂

∂z

)]
. (5.11)

We now consider the O(ε) system to determine the nonlinear evolution of the amplitude
An.

5.1. O(ε) balance

Similarly to the linear case, we can now use leading order solution to determine the O(ε)
correction. While we will present the governing equations for all vertical modes of this
correction term, we will only give the solution for the case where the vertical structure of
the correction matches that of the leading order mode. In this case a secularity condition
will allow us to determine the slow evolution of the amplitude, An. The O(ε) system is

A0

(
1 +A2

0

) ∂
∂z

[
1

N 2

∂p
(n)
1

∂z

]
+A0

(
∂2

∂x2
+

∂2

∂λ2

)
p
(n)
1 =

A0

(
1 +A2

0

) [ ∂
∂z

(
δ′

N 2

)
∂p

(n)
0

∂λ
+ 2

δ′

N 2

∂2p
(n)
0

∂z∂λ

]
+
E
Pr

(
1 +A2

0

) ∂
∂z

[
1

N 2
Db
∂p

(n)
0

∂z

]
+

2A2
0

[
− ∂

∂T
+ EDu

]
∂

∂z

[
1

N 2

∂p
(n)
0

∂z

]
+ EDu

(
∂2

∂x2
+

∂2

∂λ2

)
p
(n)
0

−R
[
−∂Fu
∂λ

+A0
∂Fu
∂x

+
(
1 +A2

0

) ∂
∂z

[
Fb
N 2

]]
, (5.12)

subject to

∂p
(n)
1

∂z
= δ′

∂p
(n)
0

∂λ
at z = −1, 0, (5.13)

and[
∂

∂x
−A0

∂

∂λ

]
p
(n)
1 =

[
∂

∂T
− EDu

]
∂p

(n)
0

∂λ
− δ′

N 2
A0

(
1 +A2

0

) ∂p(n)0

∂z
−RFu at λ = 0.

(5.14)
Similarly to the linear case, this can be simplified by substituting

p
(n)
1 = q

(n)
1 + δ

∂p
(n)
0

∂λ
, (5.15)

to get a system for q
(n)
1 . Given the functional dependence of the forcing we now take

q
(n)
1 = q

(n)
1 (x− (U + cn)t, λ, z, T ) , (5.16)

so

A0 = −cn
∂

∂x
, (5.17)

and expand q1 as

q
(n)
1 =

∞∑
m=0

q
(n)
1mZm. (5.18)
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Finally we substitute for the right hand side terms in Eq. (5.12) to give the following

system for q
(n)
1m[

∂2

∂λ2
− 1

c2m
− c2n − c2m

c2m

∂2

∂x2

]
∂q

(n)
1m

∂x
=[

−2δmn
cn

∂2

∂x2
∂An
∂T
− 2Eσmn

Pr c3n

(
1 + c2n

∂2

∂x2

)
An +

2Eεmn
c3n

(
1− c2n

∂2

∂x2

)
An

]
exp

[
− λ

cn

]
+

R
[

3αmn
c3n

[
2− c2n

∂2

∂x2

]
(AnA

′
n)− 3βmn

c3n

(
1 + c2n

∂2

∂x2

)
(AnA

′
n)

]
exp

[
−2λ

cn

]
, (5.19)

subject to[
1 + cn

∂

∂λ

]
∂q

(n)
1m

∂x
= −δmn

cn

∂An
∂T
− 2Eεmn

cn
An+

γmn
cn

(
1 + c2n

∂2

∂x2

)
∂An
∂x
− 3Rαmn

cn
(AnA

′
n) at λ = 0, (5.20)

where

αmn =
1

3cnz2m

∫ 0

−1

[
Z2
n +

c2n
N 2
Z ′2n
]
Zm dz, (5.21)

and

βmn = − 1

3cnz2m

∫ 0

−1

∂

∂z

[
c2n
N 2
ZnZ ′n +

c4n
N 4
Z ′nZ ′′n

]
Zm dz, (5.22)

describe the effects of nonlinearity. We note that εmn, σmn and γmn are the same as
defined in Section 4.2. This system can be solved for any m using Fourier transforms in
x. For simplicity, we consider only the case of m = n in order to determine the evolution
of the amplitude on the slow timescale T .

5.1.1. m = n: The O(ε) correction to the nth baroclinic mode

Here we consider the correction term with the same vertical structure as the leading
order mode, hence m = n. We have[

∂2

∂λ2
− 1

c2n

]
∂q

(n)
1n

∂x
=[

− 2

cn

∂2

∂x2
∂An
∂T
− 2Eσnn
Pr c3n

(
1 + c2n

∂2

∂x2

)
An +

2Eεnn
c3n

(
1− c2n

∂2

∂x2

)
An

]
exp

[
− λ

cn

]
+

3R
[
αnn
c3n

[
2− c2n

∂2

∂x2

]
(AnA

′
n)− βnn

c3n

(
1 + c2n

∂2

∂x2

)
(AnA

′
n)

]
exp

[
−2λ

cn

]
, (5.23)

subject to[
1 + cn

∂

∂λ

]
∂q

(n)
1n

∂x
= − 1

cn

∂An
∂T
− 2Eεnn

cn
An+

γnn
cn

(
1 + c2n

∂2

∂x2

)
∂An
∂x
− 3Rαnn

cn
(AnA

′
n) at λ = 0, (5.24)

with solution of the form

∂q
(n)
1n

∂x
= C1nλ exp

[
− λ

cn

]
+ C2n exp

[
−2λ

cn

]
. (5.25)
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Here C1n and C2n are both set by Eq. (5.23) while Eq. (5.24) gives a consistency condition
which allows us to determine the slow evolution of An. We have

C1n =
∂2

∂x2
∂An
∂T

+
Eσnn
Pr c2n

(
1 + c2n

∂2

∂x2

)
An −

Eεnn
c2n

(
1− c2n

∂2

∂x2

)
An, (5.26)

C2n = R
[
αnn
cn

[
2− c2n

∂2

∂x2

]
(AnA

′
n)− βnn

cn

(
1 + c2n

∂2

∂x2

)
(AnA

′
n)

]
, (5.27)

and

cnC1n−C2n = − 1

cn

∂An
∂T
− 2Eεnn

cn
An +

γnn
cn

(
1 + c2n

∂2

∂x2

)
∂An
∂x
− 3Rαnn

cn
AnA

′
n. (5.28)

Substituting for C1n and C2n in Eq. (5.28) we have(
1 + c2n

∂2

∂x2

)[
∂An
∂T

+ E
(
εnn +

1

Pr
σnn

)
An +R(αnn + βnn)AnA

′
n − γnnA′n

]
= 0, (5.29)

and cancelling the leading operator gives

∂An
∂T

= −E
(
εnn +

1

Pr
σnn

)
An −R(αnn + βnn)AnA

′
n + γnnA

′
n, (5.30)

which describes the slow evolution of An. In the case ofR = 0, this evolution is equivalent
to the frequency correction, ω1, in the linear problem as given by Eq. (4.49).

5.2. Summary

Similarly to the linear case, our solution for p is given by

p =

(
1− εδ

cn

)
An (x− (U + cn)t, T ) exp

[
− λ

cn

]
Zn(z)+ε

∞∑
m=0

q
(n)
1m(λ)Zm(z)+O(ε2), (5.31)

where q
(n)
1m is given by the solution of Eq. (5.19) and Eq. (5.20) and we have assumed

that p0 consists only of a single vertical mode with mode number n. In the general case,
where p0 consists of a sum of modes, the solution will be much more complicated due to
the appearance of new terms corresponding to the nonlinear interactions between each
pair of leading order modes. Therefore the general solution will consist of a sum over n
of Eq. (5.31) plus these new interaction terms.

We now recall that the full time evolution is given by the multiple scales expansion

∂An
∂t

=
∂An
∂t

∣∣∣∣
T

+ ε
∂An
∂T

∣∣∣∣
t

, (5.32)

so combine our slow evolution result (Eq. (5.30)) with the leading order advection to give
an equation for the full time evolution of the wave amplitude

∂An
∂t

+(U+cn−εγnn)
∂An
∂x

+Ro (αnn + βnn)An
∂An
∂x

= −E
(
εnn +

1

Pr
σnn

)
An. (5.33)

This is Hopf’s equation with linear friction and in the case of Ro (αnn + βnn) = 0 we
recover Eq. (4.62) with solutions given by Eq. (4.63). We now define

Un = U + cn − εγnn, (5.34)

an = Ro (αnn + βnn) , (5.35)
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and

κn = E

(
εnn +

1

Pr
σnn

)
, (5.36)

to write
∂An
∂t

+ Un
∂An
∂x

+ anAn
∂An
∂x

= −κnAn. (5.37)

Here Un describes advection with a constant speed, an describes the effects of nonlinearity
and κn describes the damping of the amplitude by vertical mixing.

6. Nonlinear evolution of the amplitude

In Sections 4 and 5 we found that the amplitude of the Kelvin waves, say An, satisfies
Eq. (5.37) with vanishing nonlinear coefficient, an, in the linear case. We now examine this
equation in order to understand the effects of vertical mixing on a nonlinearly evolving
amplitude; specifically we seek to determine if vertical mixing can act to prevent wave
breaking.

6.1. Nonlinear solution

We begin by making the coordinate transformation

τ = κnt, η = x− Unt, F =
an
κn
An, (6.1)

so Eq. (5.37) becomes

∂F

∂τ
+ F

∂F

∂η
= −F, (6.2)

and we impose initial condition

F (η, τ = 0) = F0(η) =
an
κn
An(η, t = 0). (6.3)

Motivated by the form of the linear solution, Eq. (4.63), we now substitute

F = G(η, τ)e−τ , (6.4)

into Eq. (6.2) to obtain

∂G

∂τ
+ e−τG

∂G

∂η
= 0, (6.5)

subject to

G(η, τ = 0) = F0(η). (6.6)

This system can be solved using the method of characteristics and the solution for G is
given by

G(η, τ) = F0(r), (6.7)

where r = r(η, τ) is defined implicitly by

η = r + F0(r)
(
1− e−τ

)
. (6.8)

Therefore our solution for F can be written as

F (η, τ) = F0(r(η, τ))e−τ . (6.9)

We note that nonlinear effects enter through r and the exponential factor corresponds to
the decay of the amplitude due to the effects of vertical mixing. The solution will break
if r becomes multi-valued for any (η, τ).
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6.2. Wave breaking

Here we examine the possibility of wave breaking and determine conditions for when
breaking will occur. We proceed by substituting

θ = 1− e−τ , (6.10)

into Eq. (6.5) to obtain Burger’s equation

∂G

∂θ
+G

∂G

∂η
= 0, (6.11)

and note that solutions to Burger’s equation will always break for a smooth initial profile
if there is a region of negative gradient. Assuming that the amplitude vanishes as x→ ±∞
we note that all non-zero initial profiles must therefore break in η−θ space. Since τ →∞
corresponds to θ → 1 we concluded that solutions to Eq. (6.5) will break at some finite
time, τ∗, if solutions to Burger’s equation, Eq. (6.11), would break for some θ∗ < 1. It
can be shown that solutions to Burger’s equation first break at

θ = − 1

F ′0(r(η, θ))
, (6.12)

hence there will only be breaking solutions for F (η, τ) if

−F ′0 > 1, (6.13)

for some η. This corresponds to r∞(η) being multi-valued where r∞ the value of r when
θ = 1 (corresponding to τ =∞) and is given implicitly by

η = r∞ + F0(r∞). (6.14)

Substituting for F0 we have that solutions will break if

−an
κn

∂An
∂x

(x, 0) > 1, (6.15)

for some x. If r does become multi-valued at say (η, τ) = (η∗, τ∗) then our solution will
break at

(x, t) = (η∗ + Unτ
∗/κn, τ

∗/κn), (6.16)

where (η∗, τ∗) depends on the ratio an/κn through the initial condition since F0(η) =
anAn(η, 0)/κn. We note that waves will travel further before breaking for larger Un hence
topography can modify the distance travelled by the wave before breaking by modifying
the speed, Un.

6.3. Summary

Combining our results we have full solution

An = G (r (x− Unt, κnt)) e−κnt, (6.17)

where

η = r(η, τ) +
an
κn
G(r(η, τ))

(
1− e−τ

)
, (6.18)

with wave breaking if

max
x

[
−an
κn

∂G

∂x

]
> 1. (6.19)

For a given initial amplitude, G, we can see that wave breaking will occur only if the
ratio an/κn is sufficiently large. Therefore although vertical mixing acts to suppress wave
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breaking it cannot prevent breaking if the nonlinearity is strong enough. We note that
an may be negative in which case any breaking will occur of the side of the wave with
positive gradient.

In the case of weak mixing we can expand e−τ for small τ to get

η = r(η, t) + anG(r(η, t))
(
t+O(κnt

2)
)
, (6.20)

and

An = G (r (x− Unt, t)) (1 +O(κnt)) . (6.21)

Taking κn → 0 recovers the solution to Burger’s equation and we note that all initial
profiles will break in the limit of small κn.

For weak nonlinearity we have

η = r(η, τ) +O(an), (6.22)

hence in the limit of an → 0 we have

An = G(x− Unt)e−κnt, (6.23)

which matches the linear result of Eq. (4.63). In this case there are no breaking solutions
and our solution is a self-similar travelling wave with exponentially decaying amplitude.

Fig. 6 shows solutions for An for a range of values of (an, κn) including cases of small
an and small κn. Solutions are calculated by numerically solving Eq. (6.18) for the
characteristic variable r and using Eq. (6.17) to determine An from the initial condition

G(x) = exp
[
−(x− 1)2

]
. (6.24)

We note that the characteristics do not form straight lines in (x, t) space; although they
do in (x, θ) space. For this Gaussian initial condition, we expect solutions to break if

an
κn

>

√
e

2
, (6.25)

which is consistent with Fig. 6 in which we observe breaking for (an, κn) = (0.2, 0.1)
(b) and (0.2, 0.01) (c) but not for (an, κn) = (0.1, 0.1) (a) and (0.01, 0.1) (d). We say
that a numerical solution breaks if the characteristic curves, shown as white lines in
Fig. 6, touch at any point in the domain. The solutions in Fig. 6 which do not break,
panels (a) and (d), both exhibit different behaviour due to a very different ratio between
nonlinearity and mixing. In Fig. 6.(a) we have an/κn = 1 so we expect the solution
to initially sharpen before the mixing damps the effects of nonlinearity sufficiently that
breaking is avoided. Conversely, in Fig. 6.(d), an � κn so mixing dominates nonlinearity
from the start. There is therefore very little nonlinear evolution and the solution remains
self-similar, retaining its initial shape while exponentially decaying in time.

7. Applications to baroclinic Kelvin waves

Here we calculate typical values for the coefficients, an and κn, in order to determine
which effects may be relevant physically. For simplicity we assume that the turbulent
mixing acting on momentum and buoyancy is independent of depth, so Du = Db = 1.
While this assumption is unrealistic, we note that it gives similar values of the coefficients
to more realistic mixing parametrisations and hence is used here for simplicity. If we
use N 2 = 1 we find that the nonlinear terms are orthogonal to the leading order
solution and so do not affect the amplitude evolution. We therefore conclude that the
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(a) (b)

(c) (d)

Figure 6: Solution for An (Eq. (6.17)) as a function of (x, t) for Un = 0.5 and (an, κn) =
(0.1, 0.1) (a), (0.2, 0.1) (b), (0.2, 0.01) (c), and (0.01, 0.1) (d). Characteristic curves are
shown as white lines and we take Gaussian initial profile, G(x) = exp[−(x−1)2]. We can
see that cases (b) and (c) break while case (a) sharpens towards a smooth profile and
case (d) remains approximately self-similar.

stratification must vary with depth for any nonlinear effects to be observed and take a
simple exponential profile

N 2 = exp (z) , (7.1)

shown in Fig. 7.(a).
We can solve for the eigenfunctions, Zn, and eigenvalues, c−2n , numerically and then

calculate the values of the nonlinearity and mixing coefficients using the definitions in
Sections 4 and 5. Fig. 7.(b) shows numerical solutions for the first four eigenfunctions,
Zn, as functions of z, we note that the magnitude of the oscillations is smaller near the
bottom of the domain since 1/N 2 is larger corresponding to stronger damping.

Table 1 shows the values of the wave speed cn, nonlinearity coefficient αnn + βnn, and
mixing coefficients εnn and σnn for the first eight vertical modes. We can see that the
nonlinearity coefficient decreases with increasing n and has a different sign and magnitude
for odd and even n. Conversely the mixing coefficients increase with increasing n and are
positive. Therefore nonlinearity has a greater effect on waves with a low vertical mode
number and mixing has a greater effect on waves with a high vertical mode number.
This is unsurprising as we would expect vertical mixing to act more rapidly on waves
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Figure 7: (a) Plot of N 2 as a function of z. (b) Plot of the first 4 vertical modes, Zn, as
functions of z. We normalise the Zn such that Zn(0) = 1.

n cn αnn + βnn εnn σnn

1 0.251 0.631 5.149 4.149
2 0.125 −0.039 20.88 19.88
3 0.084 0.215 47.09 46.09
4 0.063 −0.020 83.79 82.79
5 0.050 0.129 131.0 130.0
6 0.042 −0.014 188.6 187.7
7 0.036 0.092 256.8 255.8
8 0.031 −0.010 335.4 334.4

Table 1: Numerical values of cn, αnn + βnn, εnn and σnn for the first 8 vertical modes
with N 2 = exp(z) and Du = Db = 1. Note that an = Ro (αnn + βnn) and κn =
E (εnn + σnn/Pr).

with smaller vertical scales and nonlinearity to be stronger when the nonlinear terms are
projected onto a mode with less oscillations since less cancellation occurs.

Based on our numerical results from Table 1 we assume that the nonlinearity and
mixing coefficients have a power law dependence on n. The constant and exponent may
be determined by fitting the data the to power law to get

an = Ro (αnn + βnn) ∼

{
0.6Ron−1 (odd n),

−0.08Ron−1 (even n),
(7.2)

and

κn = E (εnn + σnn/Pr) ∼ 5

(
1 +

1

Pr

)
E n2. (7.3)

We note that the coefficients depend on the details of the stratification and mixing terms
however we expect the qualitative behaviour of the n dependence to hold in general.
Additionally, this scaling result for κn is consistent with the decoupled mode case of
Martinsen & Weber (1981); Davey et al. (1983) considered in Section 4.5. Since both
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nonlinearity and vertical mixing are important when |an| ∼ κn we require

0.2Ron−1 ∼ 5

(
1 +

1

Pr

)
E n2 =⇒ E

Ro
∼ 0.04

(1 + 1/Pr)n3
, (7.4)

for both effects to be important. Here a coefficient of 0.2 is taken for an as an intermediate
between the values for positive and negative n.

Assuming typical submesoscale quantities – a Rossby radius of deformation LR =
NH/f ∼ 104 m, Coriolis parameter f ∼ 10−4 s−1, velocity scale V ∼ 0.1 − 1 ms−1 and
turbulent viscosity and diffusivity ν ∼ κ ∼ 10−4 − 10−3 m2s−1 – we obtain a typical
Rossby number of Ro ∼ 0.1 − 1, typical turbulent Ekman number of E ∼ 10−5 − 10−4

and Pr = O(1). Using these parameters in Eq. (7.4) we can see that both nonlinearity
and mixing may be similar in magnitude for the first few baroclinic modes. Conversely,
mixing will dominate for modes with large vertical mode number n due to the presence
of small vertical scales. We note that while E � Ro for most physical parameters, the
effects of vertical mixing may be similar in magnitude to, or even greater than, those
of nonlinearity due to the size of the coefficients in Table 1; this justifies the inclusion
of both mixing and nonlinearity as O(ε) effects. Using Eq. (4.65) we can determine the
horizontal scale over which vertical mixing damps the amplitude as

x ∼ U + cn − εγnn
E (εnn + σnn/Pr)

∼ 0.025

E (1 + 1/Pr)n3
. (7.5)

Here we use the scaling cn ∼ 0.25n−1 – calculated similarly to the scalings for εnn and σnn
– and take U, γnn ≈ 0 by assuming that the along-coast flow and topographic correction
to the wave speed are small compared to cn. Equivalently we can set U = 0 by working
in the frame of the background flow. Note that this scaling for cn is consistent with the
analytic result that cn = 1/(πn) for N 2 = 1. Using E ∼ 10−4 − 10−5, Pr = O(1) and
assuming a Rossby radius of deformation on the order of LR ∼ 104 m we find that vertical
mixing and nonlinearity can have an effect over a dimensional scale of x∗ ∼ 100−1000 km
for low mode number waves with increasingly small scales for larger n. Therefore we
conclude that vertical mixing and nonlinearity may be important for baroclinic Kelvin
waves along coastlines with nonlinear effects relevant only for the first few baroclinic
modes and vertical mixing dominant at high mode number.

We note that an important effect of Pr 6= 1 is to generate offshore oscillations as seen
in Section 4.5. However, these offshore oscillations do not affect the horizontal decay
scale of the modes or the balance between damping and nonlinearity so we expect the
predictions made in Eqs. (7.4) and (7.5) to be accurate for any value of Pr.

8. Conclusions and discussion

Here we have examined the influence of turbulent mixing and weak nonlinearity on
the structure and evolution of baroclinic Kelvin waves propagating along a steeply
sloping coastal boundary. We have assumed that the turbulent Ekman number, Rossby
number and aspect ratio of the slope are small and used multiple-time-scale analysis
and asymptotic analysis to determine the higher order correction to the classical Kelvin
wave solution. We later found, however, that our solution is valid for order unity Rossby
numbers due to the small coefficients multiplying the nonlinear correction terms (see
Section 7). Our results are therefore relevant to the submesoscale Kelvin waves observed
by Dewar et al. (2011) and Deremble et al. (2017) as well as the more traditional ‘long’
Kelvin waves with an alongshore scale of 100− 1000 km (Smith 1972; Davey et al. 1983;
Romea & Allen 1984).
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In the linear case where finite Rossby number effects are neglected we observe that
vertical mixing acts to damp modes by reducing the amplitude exponentially with
time and introducing decaying offshore oscillations. This observation is consistent with
previous work by Martinsen & Weber (1981); Davey et al. (1983) and we recover the
same quantitative results in the case of large Prandtl number. Damping occurs at the
same rate for all horizontal wave numbers but faster for modes with higher vertical mode
number and hence smaller vertical scales.

In our analysis we have neglected the effects of the bottom boundary layer which results
from enforcing a no-slip condition on the bottom surface. Romea & Allen (1984) used
a simple Ekman layer parametrisation to study the effects of bottom drag and Ekman
pumping to obtain results that are qualitatively similar to ours for vertical mixing. They
found that the correction due to boundary layer effects is O(

√
νb) where νb is the the

value of the turbulent diffusivity evaluated at the bottom boundary. While this correction
would appear to be larger than our O(ν) mixing correction we note that there may be
regions away from the boundary where the turbulent diffusivity is enhanced beyond it’s
bottom value by processes such as shear instabilities, double diffusion or internal wave
breaking (Large et al. 2011). In these cases both internal mixing and bottom drag may
play an important role in extracting energy from Kelvin waves.

In the long wave limit of small horizontal wave number k (and hence small frequency
ω) our linear solution reduces to the steep slope model of Romea & Allen (1984) in the
case of no vertical mixing. As demonstrated by Romea & Allen (1984), the effect of a
slope is to modify the alongshore wave speed with either an increase or decrease in speed
depending on the sign of the slope curvature. Including vertical mixing, our results are
quantitatively similar to the case of a frictional bottom Ekman layer (Romea & Allen
1984) with an exponentially decaying amplitude, a modification of the offshore structure
by terms with the same offshore decay scale and the introduction of phase shifts. Since
topography can modify the wave speed, we note that it can affect the distance a wave
will propagate before being damped by mixing effects.

In the case of superinertial waves, (ω > f), we observe that topography and vertical
mixing may drive offshore propagation where waves with high vertical mode number
are generated and propagate into the interior before being damped by mixing. This
phenomenon may provide a mechanism for transporting energy from the boundary into
the interior ocean and will be examined further in future work.

Romea & Allen (1984) found that bottom friction can force an barotropic flow even in
the case of no surface displacement; in the long wave limit this flow was independent of the
offshore direction. We similarly observe that vertical mixing can act to force a barotropic
mode, but when no restriction is placed on the size of k, we find that this mode satisfies
the Poisson equation in the horizontal plane and hence the mode decays away from the
boundary with a scale set by the wavenumber. We note that this horizontal structure is
also observed in the strong stratification limit of Johnson (1991). A sloping boundary can
similarly drive a barotropic mode however in this case the offshore decay scale matches
that of the leading order mode (Romea & Allen 1984). If a free surface condition were
used then the system would admit a barotropic Kelvin wave, while Martinsen & Weber
(1981) showed that vertical mixing does not act on barotropic modes due to the lack of
vertical structure, the wave would be modified by the addition of the forced mode.

For the weakly nonlinear case where we assume small but finite Rossby number we find
that the amplitude of a single mode satisfies a nonlinear advection equation with linear
friction resulting from vertical mixing. In the case of no vertical mixing this equation
reduces to Hopf’s equation and solutions will break similarly to the case of equatorial
Kelvin waves studied by Boyd (1980). For non-zero mixing there is a competition between
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nonlinearity and mixing with mixing dominating over long timescales. Similarly to the
linear case, mixing acts to reduce the maximum amplitude through an exponential decay
in time while nonlinearity acts to steepen the wave by creating a velocity difference
between the regions of maximum and minimum amplitudes proportional to the difference
in amplitudes. If mixing decreases the maximum amplitude sufficiently quickly that the
wave does not have time to break before the nonlinear term become small, then the
solution will remain smooth. If the nonlinearity is strong enough, however, then solutions
can break before the nonlinear term is dominated by the linear friction term. Since a steep
slope can modify the speed of the wave we observe that topography may modify the
distance travelled by the wave before breaking though the time taken to break remains
unchanged.

Since vertical mixing alone is not to enough to prevent breaking in cases of strong
nonlinearity, neglected terms such as horizontal mixing or non-hydrostatic dispersion
will become important as a breaking event is approached and horizontal scales become
small (see Appendix A). Note that these effects differ from linear friction in that they
preferentially damp small horizontal scales so act to smooth discontinuities arising from
wave breaking.

When considering the nonlinear case, we assumed that the leading order pressure field
consists of only a single vertical mode so we neglect the nonlinear interaction between
different modes. This nonlinear interaction likely modifies the evolution of the mode
amplitudes by removing energy from the leading order wave and could be studied using
simple numerical simulations.

Finally, using a simple stratification profile and typical oceanographic parameters
we have estimated the size of the nonlinearity and mixing coefficients. We find that
nonlinearity is more significant for modes with low vertical mode number n while vertical
mixing dominates for large n. Therefore we conclude that nonlinearity and mixing may
both be important for rapidly propagating modes with low n hence these modes may
dissipate or break over long spatial scales. However for slowly propagating modes with
high n, vertical mixing will rapidly act to damp out any disturbance over short horizontal
scales and the effects of nonlinearity can be neglected.

The coupled model of Deremble et al. (2017) uses the formation of submesoscale fronts
within the boundary region as a means of dissipating mesoscale energy and injecting
vorticity back into the ocean interior, these fronts are formed when the interior flow
imposes a wall velocity which exceeds the Kelvin wave speed. Therefore nonlinear wave
breaking may provide another mechanism by which sharp buoyancy fronts can form so
may provide another mechanism for dissipating boundary energy.

While we have considered an idealised theoretical model, the processes we describe
– the dissipation of wave energy by vertical mixing and the generation of small scales
by nonlinear wave breaking – may be important for understanding the submesoscale
dynamics and energetics of coastal regions. Therefore these processes may play a role in
both the parametrisation of sources and sinks of mesoscale energy and the closure of the
global energy budget.
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Appendix A. Regularisation by dispersion and horizontal diffusion

We have seen that vertical mixing alone is not enough to prevent wave breaking in
cases of strong nonlinearity. Here we consider non-hydrostatic dispersion and horizontal
diffusion which become important at small scales and act to regularise the shock.

Horizontal diffusion can be included by redefining

Du =
∂

∂z

[
Du

∂

∂z

]
+ε4Du

[
∂2

∂x2
+

∂2

∂y2

]
, Db =

∂

∂z

[
Db

∂

∂z

]
+ε4Db

[
∂2

∂x2
+

∂2

∂y2

]
, (A 1)

so this effect appears as O(ε5) terms in Eq. (2.1). Dispersion due to non-hydrostatic
effects is already included in Eq. (2.1) through the O(ε4) time derivative term on the
left hand side of Eq. (2.1c). We will proceed by assuming that dispersion and horizontal
diffusion appear at O(ε) and include these terms in the O(ε) system. This derivation
could instead be done rigorously by rescaling x and t by some powers of epsilon in order
to promote these terms to O(ε), similarly to the classical derivation of the KdV equation
for internal waves (Grimshaw 1981).

We can repeat our weakly nonlinear analysis from Section 5 with dispersion and
diffusion by including the term

T = −ε4
(
1 + L2

u

) ∂
∂z

[
Lb
N 2

(
∂

∂t
+ U

∂

∂x

)
w0

]
, (A 2)

on the right hand side of Eq. (5.7) and redefining the advection diffusion operators as

Lu =

[
∂

∂t
+ U

∂

∂x
+ ε

∂

∂T
− εE ∂

∂z

(
Du

∂

∂z

)
− ε5EDu

(
∂2

∂x2
+

∂2

∂y2

)]
, (A 3)

and

Lb =

[
∂

∂t
+ U

∂

∂x
+ ε

∂

∂T
− εE
Pr

∂

∂z

(
Db

∂

∂z

)
− ε5EDb

(
∂2

∂x2
+

∂2

∂y2

)]
. (A 4)

Including these new terms at O(ε) modifies the consistency condition, Eq. (5.30), by
adding diffusive and dispersive terms to the slow evolution of An. Our damped Hopf
equation for An, Eq. (5.33), now becomes as damped KdV-Burgers equation, given by

∂An
∂t

+ (U + cn − εγnn)
∂An
∂x

+Ro (αnn + βnn)An
∂An
∂x

+
ε4c3nνnn

2

∂3An
∂x3

=

− E
(
εnn +

1

Pr
σnn

)
An + ε4E

(
ε′nn +

1

Pr
σ′nn

)(
1 + c2n

∂2

∂x2

)
An, (A 5)

where

νmn = − c
2
n

z2m

∫ 0

−1

∂

∂z

[
1

N 4

∂Zn
∂z

]
Zm dz, (A 6)

ε′mn =
1

2c2nz
2
m

∫ 0

−1
DuZnZm dz, (A 7)

and

σ′mn = − 1

2z2m

∫ 0

−1

∂

∂z

[
Db

N 2

∂Zn
∂z

]
Zm dz =

1

2z2m

∫ 0

−1

Db

N 2

∂Zn
∂z

∂Zm
∂z

dz. (A 8)

Note that horizontal mixing adds a new linear friction term which appears to drive
exponential growth of the amplitude. This term is due to mixing in the offshore direction
and arises due to not enforcing a no-slip boundary condition at λ = 0, this leads to a
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momentum flux from the boundary. Since this term is small compared to the damping
from vertical mixing and does not become large as along-shore gradients sharpen, we
neglect it.

Defining dispersion coefficient, dn, and horizontal mixing coefficient, hn, as

dn =
ε4c3nνnn

2
and hn = ε4c2nE

(
ε′nn +

1

Pr
σ′nn

)
, (A 9)

we can write

∂An
∂t

+ Un
∂An
∂x

+ anAn
∂An
∂x

+ dn
∂3An
∂x3

= −κnAn + hn
∂2An
∂x2

, (A 10)

where Un, an and κn are defined in Section 5.2. We note that dispersion and diffusion
can both regularise our solutions. Diffusion acts to preferentially damp small scales and
smooth out a shock, while dispersion acts to advect small scales away from the breaking
region preventing the build up which leads to a discontinuity.

If we assume that An and all derivatives of An tend to zero as x→ ±∞ we can multiply
Eq. (A 10) by An and integrate over the horizontal domain to get

1

2

∂

∂t

∫ ∞
−∞

A2
n dx+ dn

∫ ∞
−∞

An
∂3An
∂x3

dx = −κn
∫ ∞
−∞

A2
n dx+ hn

∫ ∞
−∞

An
∂2An
∂x2

dx, (A 11)

where the advection and nonlinear terms have been written as vanishing boundary
contributions. Using integration by parts we can now write

1

2

∂

∂t

∫ ∞
−∞

A2
n dx−

dn
2

∫ ∞
−∞

∂

∂x

[
∂An
∂x

]2
dx = −κn

∫ ∞
−∞

A2
n dx−hn

∫ ∞
−∞

[
∂An
∂x

]2
dx, (A 12)

hence the dispersion term vanishes and we have conservation of total energy for the
damped KdV-Burgers equation

1

2

∂

∂t

∫ ∞
−∞

A2
n dx = −κn

∫ ∞
−∞

A2
n dx− hn

∫ ∞
−∞

[
∂An
∂x

]2
dx. (A 13)

Similarly conservation of total momentum is given by

∂

∂t

∫ ∞
−∞

An dx = −κn
∫ ∞
−∞

An dx. (A 14)

In the case of hn = 0 we observe that both the energy and momentum decay exponentially
(Cavalcanti et al. 2012) while for κn = 0 the total momentum is conserved and the energy
decays. We note that horizontal mixing dissipates more energy in regions of high gradient
unlike vertical mixing which occurs at the same rate everywhere.
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