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The meridional component of the earth’s rotation is often neglected in geophysical
contexts. This is referred to as the ‘traditional approximation’ and is justified by the
typically small vertical velocity and aspect ratio of such problems. Ocean fronts are
regions of strong horizontal buoyancy gradient and are associated with strong vertical
transport of tracers and nutrients. Given these comparatively large vertical velocities,
non-traditional rotation may play a role in governing frontal dynamics.

Here the effects of non-traditional rotation on a front in turbulent thermal wind balance
are considered using an asymptotic approach. Solutions are presented for a general
horizontal buoyancy profile and examined in the simple case of a straight front. Non-
traditional effects are found to depend strongly on the direction of the front and may
lead to the generation of jets and the modification of the frontal circulation and vertical
transport.

1. Introduction

The so-called ‘traditional approximation’ (Eckart 1960; Gerkema et al. 2008; Lucas
et al. 2017) describes the neglect of the meridional (North-South) component of the
planetary rotation vector. This approximation is justified by a scaling argument and
valid for flows in which the vertical length-scales are small compared to the horizontal
length-scales and the vertical velocities are small. While the traditional approximation is
generally accurate for oceanic and atmospheric flows, the effects of the neglected rotation
component - referred to here as non-traditional effects - can still be important in some
problems, particularly if the vertical velocities are large or the traditional rotation vector
vanishes.

For flows with strong vertical velocities, non-traditional rotation can have a variety of
effects such as introducing directional dependence in Ekman flows (Coleman et al. 1990;
McWilliams & Huckle 2006) and tilting convective plumes in deep convection (Garwood
1991; Sheremet 2004). Near the equator, the traditional Coriolis parameter is small and
non-traditional rotation dominates. This results in a different form of geostrophic balance
(de Verdière & Schopp 1994) in which horizontal density gradients are balanced by the
meriodionally sheared velocity and can lead to the emergence of new phenomena such as
the deep equatorial jets studied by Hua et al. (1997).

Non-traditional effects also play an important role in the dynamics of internal waves
(Gerkema & Shira 2005; Gerkema et al. 2008), particularly in the case of near-inertial
waves where they act as a singular perturbation, resulting in qualitatively different
behaviour to the traditional system even when a scaling argument would suggest these
effects are small. This perturbation corresponds to the existence of a range of trapped sub-
inertial modes which vanish under the traditional approximation. Other effects include
increasing the critical latitude at which internal waves can no longer propagate and
modifying the reflection off a sloping bottom (Gerkema 2006).
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Ocean fronts are regions of strong horizontal buoyancy gradient and are common
features in the upper ocean. These fronts typically occur on horizontal scales of around
1−10 km and exist in a state close to turbulent thermal wind (TTW) balance - the three
way balance between the Coriolis force, horizontal pressure gradients and the vertical
mixing of momentum (Cronin & Kessler 2009; Gula et al. 2014; McWilliams et al. 2015;
Wenegrat & McPhaden 2016). Frontal systems are predominantly hydrostatic so vertical
pressure gradients are set by the fluid density. An important dynamical feature of frontal
systems is the secondary circulation (McWilliams 2017) which is associated with an
enhanced vertical velocity and acts to exchange heat and nutrients (Garrett & Loder
1981; Ferrari 2011) between the surface and the ocean interior. Due to this large vertical
velocity, non-traditional effects may play a role in governing frontal dynamics.

Crowe & Taylor (2018) considered a simple analytical model for a front in TTW
balance. Vertical mixing was shown to generate a leading order cross-front flow which
drives a circulation around the front and hence strong up/downwelling at the frontal
edges. The circulation acts to restratify the front through the tilting of vertical buoyancy
contours and the induced vertical stratification is maintained through an advection-
diffusion balance. Over very long time-scales, the correlation between the cross-front flow
and vertical stratification was shown to result in frontal spreading via shear dispersion.
These predictions were tested in Crowe & Taylor (2019b) and the model was extended to
include the effects of surface wind stress and buoyancy flux in Crowe & Taylor (2020) and
used to study the effects of vertical mixing on baroclinic instability in Crowe & Taylor
(2019a).

Here, the effects of non-traditional rotation on a front in TTW balance are considered
by including these effects as a perturbation from the TTW solution of Crowe & Taylor
(2018). A small parameter representing the strength of the non-traditional rotation
component is introduced and asymptotic solutions for the velocity fields and induced
stratification are derived. The magnitude of the non-traditional correction terms is found
to depend strongly on the angle of the front with fronts aligned in the East-West direction
being most strongly affected by non-traditional rotation and fronts aligned in the North-
South direction being unaffected.

An important feature of the solution is the generation of vertical vorticity by the hor-
izontal component of the non-traditional Coriolis force. This vorticity appears as along-
front jets and results in temporal evolution of the system over much faster timescales than
the shear dispersion observed by Crowe & Taylor (2018). Additionally, it is found that
non-traditional effects can modify the circulation around the front leading to enhanced
vertical transport and regions of increased surface velocity convergence. This velocity
convergence is frontogenetic (Hoskins 1982; Shakespeare & Taylor 2013; McWilliams
2017) - driving a sharpening of the horizontal buoyancy gradients - however it should be
noted that the predicted sharpening is weak and non-traditional effects are unlikely to
be a dominant mechanism for frontogenesis.

In Section 2 the problem setup is described and the parameters and governing equations
introduced. General asymptotic solutions are derived in Section 3 and summarised in
Section 4 with reference to the special case of a straight front. A specific example is
illustrated in Section 5 and the features of the solution are shown and discussed. Finally
in Section 7 the results are discussed with reference to typical ocean parameters and
areas for future work.
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2. Setup

Consider a horizontally infinite layer of fluid between two rigid, horizontal boundaries
with Cartesian coordinates (x, y, z). Here x describes the East-West direction, y describes
the North-South direction and z is the vertical coordinate representing depth.The system
is taken to be rotating with a constant angular velocity about the y and z axes.
Evolution is governed by the incompressible Boussinesq equations where density changes
are represented by a single scalar, buoyancy, with a single scalar equation describing its
evolution. The governing equations can now be written (Crowe & Taylor 2018; Charney
1973) as

Du

Dt
+ f× u =−∇p+ bẑ + ν∇2u, (2.1a)

∇ · u = 0, (2.1b)

Db

Dt
=κ∇2b, (2.1c)

for

f =

0

f̃
f

 , ẑ =

0
0
1

 , (2.2)

where f and f̃ describe the vertical and meridional components of rotation respectively.
Due to the typically small horizontal scales of ocean fronts, the beta effect is not
considered and f and f̃ are taken to be constant. Using typical horizontal lengthscale,
(x, y) ∼ L, typical buoyancy scale, b ∼ B, inertial timescale, t ∼ 1/f , and layer depth,
H, it is convenient to nondimensionalise (u, v) by U = BH/(fL), w by BH2/(fL2)
and p by BH. The system is now described by five nondimensional parameters; the
Rossby number, Ro = U/(fL), the Ekman number, E = ν/(fH2), the Prandtl number,
Pr = ν/κ, the aspect ratio, ε = H/L and the ratio f̃/f . It should be noted that
(f, f̃) = 2Ω(sin θ, cos θ) where Ω is the rotation rate of the Earth and θ is the latitude.
Therefore

f̃

f
=

1

tan θ
, (2.3)

so non-traditional effects will be amplified near the equator where θ is small. The ratio
f̃/f only appears multiplied by ε so a non-traditional parameter

δ =
εf̃

f
, (2.4)

is introduced for brevity. The governing equations can now be written as

∂u

∂t
+ Ro

[
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
+ δw − v =− ∂p

∂x
+ E

∂2u

∂z2
, (2.5a)

∂v

∂t
+ Ro

[
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
+ u =− ∂p

∂y
+ E

∂2v

∂z2
, (2.5b)

∂b

∂t
+ Ro

[
u
∂b

∂x
+ v

∂b

∂y
+ w

∂b

∂z

]
=

E

Pr

∂2b

∂z2
, (2.5c)

−δu =− ∂p

∂z
+ b, (2.5d)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.5e)
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Figure 1: Typical non-dimensional frontal geometry showing a front with horizontal
buoyancy gradient, ∇Hb, and buoyancy of b = −1 (resp. b = 1) on the low (resp.
high) buoyancy side of the front. Top and bottom boundary conditions are applied at
z = ±1/2. In this non-dimensional setup, the system is rotating with angular velocity
δŷ + ẑ.

where all terms scaled by ε2 have been neglected. Therefore, the vertical momentum
equation reduces to quasi-hydrostatic balance and any horizontal mixing terms vanish.
Top and bottom boundaries are placed at z = ±1/2 where no-stress conditions are
imposed on the horizontal velocity, no-flow conditions on the vertical velocity and no-
flux conditions on the buoyancy. These conditions are taken for simplicity and may be
replaced by a wind stress or heat flux condition as considered by Crowe & Taylor (2020).

In the following analysis the depth-dependent and depth-independent parts of fields
are often considered separately so it is convenient to define the depth-average

∗ =

∫ 1/2

−1/2
∗dz, (2.6)

and denote the deviation from this depth average by ∗′ = ∗ − ∗. Additionally, the
horizontal gradient vector is denoted by

∇H =

(
∂

∂x
,
∂

∂y
, 0

)
. (2.7)

An ocean front is represented here as an isolated region of non-zero horizontal buoyancy
gradient, ∇Hb, with b = −1 on the low buoyancy side and b = 1 on the high buoyancy
side. The cross-front direction is defined to be the direction aligned with ∇Hb and the
along-front direction to be aligned with ẑ×∇Hb. Typically, variations in the along-front
direction occur over larger scales than cross-front variations and hence examples of fronts
with no along-front variation are used to illustrate these results. A typical frontal setup
is shown in Fig. 1.

If the system is independent of y - corresponding to a front aligned in the North-South
direction - the non-traditional terms can be removed from Eq. (2.5) by replacing p by
p+ pδ where pδ is defined using

∂pδ
∂x

= −δw and
∂pδ
∂z

= δu. (2.8)

This definition is consistent as it can be easily shown to satisfy mass conservation. The
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resulting system is equivalent to setting δ = 0 and hence non-traditional effects have no
effect beyond the addition of an extra term in the pressure field.

3. Asymptotic expansion

To proceed, the parameters δ and Ro are assumed small with δ � Ro. Taking Ro ∼ δ2,
quantities may be expanded using an asymptotic expansion in δ by writing

ϕ = ϕ0 + δ ϕ1 + δ2ϕ2 + . . . , (3.1)

for some field ϕ. Substituting expansions of this form into Eq. (2.5) gives a system of
equations for each power of δ. Typically, Ekman numbers lie in the range of E ∼ 0.01−1
(Crowe & Taylor 2018). However, it should be noted that even for E � 1, fields may
be significantly modified within the top and bottom Ekman layers (of depth O(

√
E))

so E is taken to be an O(1) quantity throughout. Mathematically, this may be seen as
retaining the highest vertical derivatives in order to enforce the top and bottom boundary
conditions.

Before proceeding with the analysis it is worth discussing the time derivative terms in
Eq. (2.5). Unlike the TTW solutions of Crowe & Taylor (2018, 2019b), steady solutions to
order O(Ro) do not exist; this unsteadiness results from the generation of depth-averaged
vorticity by non-traditional effects.

3.1. Generation of vorticity by non-traditional effects

Neglecting terms of order O(δ2) from Eq. (2.5) and depth-averaging Eqs. (2.5a), (2.5b)
and (2.5e) gives

∂u

∂t
+ δw − v =− ∂p

∂x
, (3.2a)

∂v

∂t
+ u =− ∂p

∂y
, (3.2b)

∂u

∂x
+
∂v

∂y
= 0, (3.2c)

which may be combined to give

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
= δ

∂w

∂y
. (3.3)

Eq. (3.3) states that the non-traditional component of the Coriolis force acts to generate
vorticity over long times, t ∼ O(1/δ). This suggests the inclusion of a second timescale,
T = δt, corresponding to this vorticity generation. Using a multiple scales approach the
time derivative may be expanded as

∂

∂t
→ ∂

∂t
+ δ

∂

∂T
, (3.4)

where now the ∂/∂t term corresponds to transient inertial oscillations resulting from
an unbalanced initial condition. From Crowe & Taylor (2018) a longer timescale on the
order of t ∼ O(δ4) is also expected to be important. This slow scale corresponds to shear
dispersive spreading of the front and will be discussed in Section 3.6.

From now on transient oscillations are neglected by setting the fast time derivative,
∂/∂t, to zero. Therefore the system is assumed to be balanced over the inertial timescale
t and only the slow evolution is considered.
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3.2. The O(1) solution

At leading order in δ Eq. (2.5) gives

−v0 =− ∂p0
∂x

+ E
∂2u0
∂z2

, (3.5a)

u0 =− ∂p0
∂y

+ E
∂2v0
∂z2

, (3.5b)

0 =
E

Pr

∂2b0
∂z2

, (3.5c)

0 =− ∂p0
∂z

+ b0, (3.5d)

∂u0
∂x

+
∂v0
∂y

+
∂w0

∂z
= 0, (3.5e)

corresponding to the leading order (in Ro) TTW system of Crowe & Taylor (2018). The
leading order buoyancy equation may now be solved for

b0 = b0(x, y, T ), (3.6)

hence the layer is vertically well mixed to leading order in δ. The leading order pressure
may now be solved as

p0 = p0 + z b0, (3.7)

where p0 balances the depth-averaged component of velocity through geostrophic balance.
This depth-averaged flow may be represented as a streamfunction by

u0 = −∂ψ0

∂y
, v0 =

∂ψ0

∂x
, (3.8)

where ψ0 = p0 so the depth-averaged pressure acts as a streamfunction for this horizontal
flow. The depth-dependent velocity fields, (u′0, v

′
0, w0), may be calculated (see Crowe &

Taylor (2018)) by solving a fourth order linear system to obtain solution

u′0 =−
√

E

[
K ′′(ζ)

∂b0
∂x
−K(ζ)

∂b0
∂y

]
, (3.9a)

v′0 =−
√

E

[
K(ζ)

∂b0
∂x

+K ′′(ζ)
∂b0
∂y

]
, (3.9b)

w0 = EK ′(ζ)∇2
Hb0, (3.9c)

where ζ = z/
√

E and K(ζ) is an E dependent vertical structure function satisfying
K(4)(ζ) +K(ζ) + ζ = 0 for ζ ∈ [−ζ0, ζ0],

K ′(ζ) = 0 at ζ = ±ζ0,
K ′′′(ζ) = 0 at ζ = ±ζ0,

(3.10)

where ζ0 = 1/(2
√

E) is the value of |ζ| on the top and bottom surfaces. Note that primes
(′) on K are taken to mean derivatives with respect to ζ rather than deviations from
a vertical average as used elsewhere. The full solution for K(ζ) is given by K0(ζ) in
Appendix A of Crowe & Taylor (2018). For E� 1 it can be shown that K(ζ) ∼ −ζ and
hence thermal wind balance holds outside of thin boundary layers of width O(

√
E) near

the top and bottom boundaries.
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3.3. The O(δ) solution

At order O(δ) Eq. (2.5) gives

∂u0
∂T

+ w0 − v1 =− ∂p1
∂x

+ E
∂2u1
∂z2

, (3.11a)

∂v0
∂T

+ u1 =− ∂p1
∂y

+ E
∂2v1
∂z2

, (3.11b)

∂b0
∂T

=
E

Pr

∂2b1
∂z2

, (3.11c)

−u0 =− ∂p1
∂z

+ b1, (3.11d)

∂u1
∂x

+
∂v1
∂y

+
∂w1

∂z
= 0. (3.11e)

It can be shown that the only solutions satisfying Eq. (3.11c) along with no flux boundary
conditions are

∂b0
∂T

= 0 and b1 = b1(x, y, T ). (3.12)

Therefore b0 does not change over the timescale t = O(1/δ) and the buoyancy is also
depth-independent to O(δ). The pressure may now be calculated using Eqs. (3.9a)
and (3.11d) as

p1 = p1 + (b1 + u0)z − E

[(
K ′(ζ)− K(ζ0)

ζ0

)
∂b0
∂x

+

(
K ′′′(ζ)− K ′′(ζ0)

ζ0
+
ζ2

2
− ζ

2
0

6

)
∂b0
∂y

]
,

(3.13)
where the final term arises from the integral of u′0 and has been set to be depth-
independent.

3.3.1. The depth-averaged system

From Eqs. (3.11a), (3.11b) and (3.11e), the depth-averaged velocity and pressure satisfy

∂u0
∂T

+ w0 − v1 =− ∂p1
∂x

, (3.14a)

∂v0
∂T

+ u1 =− ∂p1
∂y

, (3.14b)

∂u1
∂x

+
∂v1
∂y

= 0, (3.14c)

which may be combined to give

∂

∂T

(
∂v0
∂x
− ∂u0

∂y

)
=
∂w0

∂y
=⇒ ∂

∂T
∇2ψ0 =

∂w0

∂y
, (3.15)

which describes the generation of depth-averaged vorticity. Substituting for w0 gives that

∂ψ0

∂T
= 2
√

E3K(ζ0)
∂b0
∂y

=⇒ ψ0 = Ψ0 + 2
√

E3K(ζ0)
∂b0
∂y

T, (3.16)

where Ψ0 = Ψ0(x, y) is the value of ψ0 at T = 0. The depth-averaged geostrophic flow
can now be determined from ψ0. From Eq. (3.14c) the O(δ) depth-averaged flow may
now be written as

u1 = −∂ψ1

∂y
, v1 =

∂ψ1

∂x
, (3.17)
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where, by Eqs. (3.14a) and (3.14b), ψ1 is related to p1 through

p1 = ψ1 − 2
√

E3K(ζ0)
∂b0
∂x

. (3.18)

To determine the evolution of ψ1 it is necessary to consider the O(δ2) system.

3.3.2. The depth-dependent system

The depth-dependent quantities may now be considered by subtracting the depth-
averaged horizontal momentum equations in Eq. (3.14) from Eqs. (3.11a) and (3.11b) to
obtain

w′0 − v′1 =− ∂p′1
∂x

+ E
∂2u′1
∂z2

, (3.19a)

u′1 =− ∂p′1
∂y

+ E
∂2v′1
∂z2

, (3.19b)

where the time derivative terms vanish as (u′0, v
′
0) does not depend on T . Substituting for

w′0 using Eq. (3.9c) and p′1 using Eq. (3.13), this system may be solved (see Appendix A)
for solution

u′1 =−
√

E

[
K ′′(ζ)

∂

∂x
−K(ζ)

∂

∂y

](
b1 −

∂ψ0

∂y

)
+ E

∂

∂y

[
A(ζ)

∂b0
∂x
−B(ζ)

∂b0
∂y

]
, (3.20a)

v′1 =−
√

E

[
K(ζ)

∂

∂x
+K ′′(ζ)

∂

∂y

](
b1 −

∂ψ0

∂y

)
+ E

∂

∂y

[
B(ζ)

∂b0
∂x

+A(ζ)
∂b0
∂y

]
. (3.20b)

Finally, w1 may be calculated using Eq. (3.11e) as

w1 = EK ′(ζ)∇2
H

(
b1 −

∂ψ0

∂y

)
−
√

E3 C(ζ)∇2
H

∂b0
∂y

, (3.21)

where C(ζ) is the integral of A(ζ). The functions A, B and C are complicated functions
of ζ, K(ζ) and ζ0 and are given in Appendix B.

3.4. The O(δ2) solution

In Crowe & Taylor (2018) it was shown that an O(Ro) stratification is induced and
maintained by an advection-diffusion balance in the buoyancy equation. Here this effect
is expected to appear at orders O(δ2) = O(Ro) and O(δ3) and the O(δ2) system is
considered first.

3.4.1. The buoyancy field

Since it has been assumed that Ro = O(δ2), it is convenient to define Ro = R δ2 where
R is an O(1) number. The O(δ2) buoyancy equation is

∂b1
∂T

+R
(
u0
∂b0
∂x

+ v0
∂b0
∂y

)
=

E

Pr

∂2b2
∂z2

, (3.22)

and noting that b1 is depth-independent, Eq. (3.22) may be depth-averaged to obtain

∂b1
∂T

+RJ(ψ0, b0) = 0, (3.23)

where J(φ, ϕ) = (∂xφ)(∂yϕ)− (∂yφ)(∂xϕ) is the Jacobian derivative. Substituting for ψ0

gives

b1 = −R
[
J(Ψ0, b0)T +

√
E3K(ζ0) J

(
∂b0
∂y

, b0

)
T 2

]
, (3.24)
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assuming that b1 = 0 at T = 0.

Subtracting Eq. (3.23) from Eq. (3.22) gives

R
(
u′0
∂b0
∂x

+ v′0
∂b0
∂y

)
=

E

Pr

∂2b2
∂z2

. (3.25)

This equation was considered in Crowe & Taylor (2018) and describes the restratification
of the front by the TTW circulation. The solution is

b2 = b2(x, y, T )−RPr
√

EK(ζ)|∇Hb0|2. (3.26)

3.4.2. The streamfunction for the depth-averaged flow

Depth-dependent velocity components of order higher than O(δ) are not required in
the subsequent calculations. However, higher order components of ψ are required to
determine the higher order depth-averaged buoyancy terms and may be determined by
considering the vertical vorticity.

The depth-averaged vertical vorticity equation may be derived by cross-differentiating
Eq. (2.5a) and Eq. (2.5b) and depth-averaging to obtain

δ
∂η

∂T
+ Ro∇H · [uHη − ωHw] = δ

∂w

∂y
. (3.27)

Here uH = (u, v, 0) is the horizontal velocity, η = ∂v/∂x−∂u/∂y is the vertical vorticity
and

ωH =

 ∂w
∂y −

∂v
∂z

∂u
∂z −

∂w
∂x

0

 , (3.28)

is the horizontal vorticity. At O(δ2) Eq. (3.27) gives

∂∇2
Hψ1

∂T
+R J

[
ψ0,∇2

Hψ0

]
= R∇H ·

[
−u′H0η

′
0 + ωH0w0

]
+
∂w1

∂y
, (3.29)

where the flux terms can be expressed in terms of b0 to give

∂∇2
Hψ1

∂T
+R J

[
ψ0,∇2

Hψ0

]
= R∇H ·

[
P · ∇Hb0∇2

Hb0
]

+
∂w1

∂y
, (3.30)

for

P = E

(
2K ′2 K2 −K ′′2

K ′′2 −K2 2K ′2

)
. (3.31)

The flux term in Eq. (3.30) corresponds to both the generation of vorticity due to vortex
stretching and the horizontal transport of vorticity due to a correlation between the
vertically sheared profiles for the horizontal velocity and the vertical vorticity. Over
timescales longer than T , these terms have been shown to generate along front jets
(Crowe & Taylor 2019b) and play a role in baroclinic instability (Crowe & Taylor 2019a).
Vorticity is also generated by the non-traditional component of the Coriolis force through
the y variations in w1, as discussed in Section 3.1.

Eq. (3.30) may be solved for ∇2
Hψ1 by a simple integration in T . However, solving

for ψ1 requires inverting the Laplacian operator so it is not possible to present a simple
analytic solution. Solutions for Eq. (3.30) could be easily found numerically for given
fields b0, ψ0 and b1.
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3.5. The O(δ3) solution

Now the order O(δ3) balance in considered to determine the stratification maintained
by the O(δ) velocity component. The O(δ3) vorticity equation will not be examined
though it may be derived from Eq. (3.27) similarly to Eq. (3.30). The buoyancy equation
is

∂b2
∂T

+R
(
u1
∂b0
∂x

+ v1
∂b0
∂y

+ u0
∂b1
∂x

+ v0
∂b1
∂y

)
=

E

Pr

∂2b3
∂z2

, (3.32)

which may be depth-averaged to obtain

∂b2
∂T

+R [J(ψ1, b0) + J(ψ0, b1)] = 0. (3.33)

This equation may be solved using the expression for ψ1 if required. Since the depth-
averaged buoyancy is known to the first two orders in δ and it is not possible to find a
simple analytic expression for ψ1, expressions for b are not calculated explicitly at O(δ2)
or higher. Instead, the focus is on determining the vertical structure of b, denoted b′, to
the lowest two orders. Since the lowest order term in b′ is b′2 (see Eq. (3.26)), the next
order term, b′3, must also be determined.

Subtracting Eq. (3.33) from Eq. (3.32) and noting that ∂b′2/∂T = 0 gives the equation
for the depth-dependent buoyancy

R
(
u′1
∂b0
∂x

+ v′1
∂b0
∂y

+ u′0
∂b1
∂x

+ v′0
∂b1
∂y

)
=

E

Pr

∂2b3
∂z2

, (3.34)

with solution

b3 = b3(x, y, T ) +RPr

[
E

(
D1(ζ)

2

∂

∂y
|∇Hb0|2 +D2(ζ) J

[
∂b0
∂y

, b0

])
+

√
E

(
K(ζ)

(
∇H

∂ψ0

∂y
· ∇Hb0 − 2∇Hb0 · ∇Hb1

)
−
(
K ′′(ζ) +

ζ3

6
− ζζ20

2

)
J

[
∂ψ0

∂y
, b0

])]
,

(3.35)

where the vertical structure functions D1(ζ) and D2(ζ) are given in Appendix B. The
term b4 can be determined by depth-averaging the O(δ5) buoyancy equation, as noted
above, this calculation is not done here.

3.6. Higher order terms and shear dispersive spreading

The asymptotic approach may be continued as above to O(δ4) and higher. However,
from Crowe & Taylor (2018, 2019b), slow frontal spreading is expected due to a buoyancy
flux resulting from the correlation between the leading order velocity and the O(δ2)
stratification, u′H0b

′
2. This spreading is due to shear dispersion and was found to appear in

the equations at O(Ro2) = O(δ4) and occur over a timescale of t = O(1/Ro2) = O(1/δ4).
Similarly, the flux terms u′H1b

′
2 and u′H0b

′
3 resulting from non-traditional effects might

be expected to drive some buoyancy change at O(δ5). Therefore, new timescales are
introduced to examine the effects of this shear dispersion.

The timescale T = δt was shown in Section 3.1 to be the timescale over which an
O(1) amount of depth-averaged vorticity is generated by non-traditional effects. Over
timescales longer than T , many of the terms in b and ψ demonstrate secular growth and
as such it is necessary to introduce additional slow timescales corresponding to this slow
frontal spreading. This is done by equating the size of the time derivative of the leading
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order buoyancy, b0, with the shear dispersion terms

∂b0
∂t
∼ δ4R∇H ·

[
u′H0b

′
2

]
and

∂b0
∂t
∼ δ5R∇H ·

[
u′H1b

′
2 + u′H0b

′
3

]
, (3.36)

to get two timescales, T4 = δ4t and T5 = δ5t, and letting b0 depend on T4 and T5. Here
T4 corresponds to the slow spreading timescale from Crowe & Taylor (2018) while T5
corresponds to a longer timescale on which the evolution of depth-averaged buoyancy
occurs due to non-traditional effects. Determining a closed system in full generality
requires knowing how ψ evolves over the slow scales T4 and T5 which requires examining
high order equations for the depth-averaged vorticity (Crowe & Taylor 2019a,b). Instead,
the simplifying assumption of a straight front is made. Under this assumption, the ψ
dependent terms vanish and equations purely in terms of b0 are recovered as

∂b0
∂T4

= R2 Pr∇H ·
[
Q · ∇Hb0|∇Hb0|2

]
, (3.37)

and

∂b0
∂T5

= R2 Pr∇H ·
[
R1 ·

∂∇Hb0
∂y

|∇Hb0|2 + R2 · ∇Hb0
∂

∂y
|∇Hb0|2

]
, (3.38)

where

Q(E) = E

(
K ′2 K2

−K2 K ′2

)
, (3.39)

and

R1(E) = E
√

E

(
AK −BK
BK AK

)
, R2(E) =

E
√

E

2

(
AK −D1K
D1K AK

)
. (3.40)

Eq. (3.37) is identical to the result derived in Crowe & Taylor (2018) and describes the
spreading of a front due to a horizontal buoyancy flux resulting from the correlation
between the induced stratification and the cross-front flow. Eq. (3.38) similarly describes
a horizontal buoyancy flux, with terms arising from the non-traditional corrections to
the stratification and cross-front flow.

It is worth noting that over long timescales the generation of significant background
vorticity is expected, both by non-traditional effects as discussed in Section 3.1 and
due to the correlation between along-front and cross-front velocity fields as shown in
Eq. (3.30) and discussed in Crowe & Taylor (2019b). These correlation terms appear as a
consequence of vertical mixing driving a cross-front flow and do not appear in the limit of
E→ 0. The generated vorticity manifests as along-front jets and can become large enough
to significantly modify the absolute vorticity of the system resulting in a modification
of the TTW velocity solution and hence a modified stratification and frontal spreading.
Additionally, frontal systems are susceptible to baroclinic instability (Stone 1966; Crowe
& Taylor 2019a) which may lead to a breakdown of the straight front assumption.

4. Summary of solution

Here the solution of Section 3 is summarised and results are presented and discussed
for a simple frontal geometry.
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4.1. The velocity fields

Correct to O(δ), the velocity fields are given by

uH = −∇×[(ψ0 + δ ψ1)ẑ]−
√

E K ·∇H
(
b0 + δ b1 − δ

∂ψ0

∂y

)
+δ E A·∇H

∂b0
∂y

+O(δ2), (4.1)

and

w = EK ′(ζ)∇2
H

(
b0 + δ b1 − δ

∂ψ0

∂y

)
− δ
√

E3 C(ζ)∇2
H

∂b0
∂y

+O(δ2), (4.2)

where

K (ζ) =

(
K ′′(ζ) −K(ζ)
K(ζ) K ′′(ζ)

)
and A(ζ) =

(
A(ζ) −B(ζ)
B(ζ) A(ζ)

)
. (4.3)

The depth-averaged velocity is described by a streamfunction where

ψ0 = Ψ0 + 2
√

E3 δ tK(ζ0)
∂b0
∂y

, (4.4)

for some initial streamfunction ψ0 = Ψ0 at t = 0. It should be noted that t = O(1/δ)
so all terms here are leading order. The O(δ) streamfunction component, ψ1, satisfies
Eq. (3.30).

The leading order flow can be split into components in the cross-front direction
(described by the diagonal terms in K ) and along-front direction (describes by the off-
diagonal terms in K ). However, the O(δ) terms are aligned relative to gradients of the
north-south (y) derivatives of b0 and ψ0 which do not necessarily correspond to the
direction of ∇Hb0.

Two special cases are b0 = b0(x) and b0 = b0(y). The case of b0 = b0(x) describes a front
with the along-front direction aligned with North-South. In this case all y derivatives can
be neglected and the non-traditional terms have no effect on the front as discussed in
Section 2. Conversely, b0 = b0(y) describes a front with the along-front direction aligned
with East-West. In this case non-traditional effects are maximised and the gradients of
b0 are aligned with the gradients of ∂b0/∂y so the horizontal velocity terms driven by the
non-traditional rotation can be easily split into cross-front and along-front components
similarly to the leading order flow.

4.2. The buoyancy field

The buoyancy field can be split into depth-averaged and depth-dependent components.
Correct to the lowest two orders in δ the solutions are

b = b0 + δ b1 +O(δ2) = b0 − Ro t J

[
Ψ0 +

√
E3 δ tK(ζ0)

∂b0
∂y

, b0

]
+O(δ2), (4.5)

where Ro t = O(δ). The depth-dependent buoyancy is given by

b′ = Ro Pr
√

E

[(
−K(ζ) + δ

√
E
D1(ζ)

2

∂

∂y

)
|∇Hb0|2 + δ

(√
ED2(ζ) J

[
∂b0
∂y

, b0

]
+

K(ζ)∇H
(
∂ψ0

∂y
− 2b1

)
· ∇Hb0 −

(
K ′′(ζ) +

ζ3

6
− ζζ20

2

)
J

[
∂ψ0

∂y
, b0

])]
+O(δ4). (4.6)

Similarly to the velocity fields, if b0 = b0(x) then the non-traditional rotation has no
effect on the front and the solution reduces to the results of (Crowe & Taylor 2018).
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From b′ the vertical buoyancy gradient, N2, may be determined as

N2 =
∂b′

∂z
= Ro Pr

[(
−K ′(ζ) + δ

√
E
D′1(ζ)

2

∂

∂y

)
|∇Hb0|2 + δ

(√
ED′2(ζ) J

[
∂b0
∂y

, b0

]
+

K ′(ζ)∇H
(
∂ψ0

∂y
− 2b1

)
· ∇Hb0 −

(
K ′′′(ζ) +

ζ2

2
− ζ20

2

)
J

[
∂ψ0

∂y
, b0

])]
+O(δ4). (4.7)

The horizontal buoyancy gradient may be similarly calculated using

M2 = ∇Hb = ∇Hb+∇Hb′, (4.8)

where the first term on the right-hand side is leading order and depth-independent while
the second term is order O(Ro) and depth-dependent.

4.3. Frontal spreading and shear dispersion

Over very long times the front is expected to evolve through shear dispersion.
Eqs. (3.37) and (3.38) may be combined to give

∂b0
∂t

= Ro2 Pr∇H ·
[(

Q · ∇Hb0 + δR1 · ∇H
∂b0
∂y

+ δR2 · ∇Hb0
∂

∂y

)
|∇Hb0|2

]
, (4.9)

which is valid for a straight front provided the vorticity generated by non-traditional
effects and vertical mixing is less than the background vorticity. Expressions for Q, R1

and R2 are given in Eqs. (3.39) and (3.40). It should be noted that Eq. (4.9) reduces to
the results of Crowe & Taylor (2018) for b0 = b0(x), similarly to the results for velocity
and buoyancy. If b0 = b0(y) is an odd function of y, then solutions to Eq. (4.9) will
remain odd in y for all time for the case of δ = 0. However, for δ 6= 0, the addition of
an extra y derivative in the non-traditional correction terms leads to an asymmetry and
hence different evolution on each side of the front.

5. A simple frontal geometry

To illustrate the results given in Section 4, solutions are plotted for the simple case of

b0 = tanh y. (5.1)

As noted in the previous section, this corresponds to a front with the along-front
direction (here the x direction) aligned with East-West so that non-traditional effects
are maximised. From Eq. (4.5) it can be seen that b1 = 0 since the Jacobian terms
vanish. Similarly, higher order depth-averaged buoyancy terms, such as b2 and b3, will
evolve through advection by Jacobian terms so may also be set to zero. Therefore b0 may
be taken to describe the full depth-averaged buoyancy.

5.1. Depth-independent jets

Taking initial streamfunction of Ψ0 = 0, the depth-averaged velocity is given by

ψ0 = 2
√

E3 δ tK(ζ0) sech2 y =⇒ (u0, v0) = 4
√

E3 δ tK(ζ0)
(
sech2 y tanh y, 0

)
,

(5.2)
corresponding to two jets running in opposite directions along the edges of the front. As
expected, motion is confined to the frontal region. Since the Jacobian terms vanish for
b0 = b0(y), Eq. (3.30) may be solved for ψ1 as

ψ1 = RE δ tK ′2
(
∂b0
∂y

)2

− 2 E3 (δ t)2 [K(ζ0)]2
∂3b0
∂y3

. (5.3)
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Figure 2: The streamfunction (a) and velocity (b) of the along-front jets. Solutions are
shown correct to O(δ) for E = 0.1, δ = 0.2, δ t = 1 and R = 1.

The first term of ψ1 in Eq. (5.3) describes the vorticity generated by the correlation
between the cross-front and along front TTW velocities (Crowe & Taylor 2019b) while
the second term describes the generation of vorticity through the action of the non-
traditional Coriolis force on the O(δ) vertical velocity. The streamfunction and along-
front velocity of the depth-independent jets are shown in Fig. 2 correct to O(δ) as a
function of y for E = 0.1, δ = 0.2, δ t = 1 and R = 1. These jets grow with time and are
expected to become large for T � 1.

5.2. Frontal circulation

For an x independent front, the cross-front velocity (v) and vertical velocity (w) satisfy
the mass conservation equation

∂v′

∂y
+
∂w

∂z
= 0, (5.4)

and hence the circulation around the front in the y − z plane can be represented by a
circulation streamfunction, φ, defined using

v′ =
∂φ

∂z
, w = −∂φ

∂y
. (5.5)

Note that there is no depth-independent flow in the y direction as ψ = ψ(y) so v = v′

here. The circulation components, φ0 and φ1, are given by

φ0 = −EK ′(ζ)
∂b0
∂y

, φ1 =
√

E3 C(ζ)
∂2b0
∂y2

+ EK ′(ζ)
∂2ψ0

∂y2
. (5.6)

The two terms of φ1 in Eq. (5.6) each arise due to different components of the non-
traditional Coriolis force. The horizontal component appears directly in the horizontal
momentum balance resulting in the first term of Eq. (5.6) while the vertical component
drives the system out of hydrostatic balance, modifying the pressure field and giving the
second term.

Fig. 3 shows a comparison between the TTW solutions of Crowe & Taylor (2018)
(corresponding to δ = 0) and the modified TTW solutions presented here with δ = 0.4.
Solutions are given correct to O(δ) using ϕ = ϕ0 + δ ϕ1 for a given field ϕ and shown
for E = 0.01 and T = 1. The TTW solution consists of a flow from the high buoyancy
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Figure 3: Comparison between the TTW and modified TTW solutions for E = 0.01 and
T = 1. Solutions are shown correct to O(δ). (a) φ for δ = 0, (b) φ for δ = 0.4, (c) v for
δ = 0, (d) v for δ = 0.4, (e) w for δ = 0, and (f) w for δ = 0.4.
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Figure 4: (a) The first term of the O(δ) circulation streamfunction component, φ1, from
Eq. (5.6), (b) The second term of φ1 from Eq. (5.6). Panels (c) and (d) show the cross-
front velocity (v) components associated with the streamfunction components shown in
panels (a) and (b) respectively. Results are shown for E = 0.1 and T = 1.

side of the front to the low buoyancy side near the top surface and the opposite on the
bottom surface. This results in upwelling on the high buoyancy side and downwelling on
the low buoyancy side resulting in a anti-clockwise net circulation (shown by positive φ).
This behaviour was discussed in Crowe & Taylor (2018) and is consistent with previous
results and observations (Eliassen 1962; Orlanski & Ross 1977; McWilliams 2017). Non-
traditional effects act to tilt the circulation cell and drive a flow in the centre of the
layer. This flow may lead to a topological change in the structure of the circulation with
a streamline in Fig. 3.(c) seen to split into two separate cells.

Fig. 4 shows separately the two terms of φ1 from Eq. (5.6) for E = 0.1 and T = 1. The
associated cross-front velocities are also shown. The first term consists of four counter-
rotating cells resulting in regions of convergence near the top and bottom boundaries
and acting to tilt the leading order circulation cell. The second term consists of three
counter rotating cells and results from the along-front jets modifying the vertical pressure
gradient away from hydrostatic balance. As these jets grow, the second term of φ1 grows
linearly with time for T = O(1). Over very long timescales, it is predicted that these jets
can become large enough to modify the absolute vertical vorticity in the frontal region.
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Figure 5: Comparison of the along-front velocities for the TTW and modified TTW
systems. Parameters are E = 0.01 and T = 1 and solutions are given correct to O(δ). (a)
u′ for δ = 0, (b) u′ for δ = 0.4,

Therefore, while small in Fig. 3.(b), this circulation component may become large at late
times leading to further topological changes in the structure of the frontal circulation.

Additionally, by depth-integrating the vertical velocities corresponding to the two
terms in Eq. (5.6) the net vertical transport of fluid may be calculated. The first term
depth-averages to zero so does not correspond to any vertical transport, instead this term
describes a tilting of the circulation cell as noted above. The second term does, however,
have a non-zero depth average which suggests that the circulation cells in Fig. 4.(b) may
act to enhance the vertical exchange of tracers through the surface mixed layer.

The O(δ) cross-front velocities shown in Fig. 4 contain regions of surface convergence.
This velocity convergence can lead to a sharpening of surface buoyancy gradients resulting
in frontogenesis (Hoskins 1982; Shakespeare & Taylor 2013) and hence non-traditional
effects may be frontogenetic. The asymptotic framework used here assumes Ro � 1 so
this model is not strictly valid for studying frontogenesis where the Rossby number is
typically order 1. However, for Ro = O(1) the frontal sharpening predicted here will be an
O(δ) effect, therefore, away from the equator, non-traditional effects are unlikely to be a
dominant frontogenetic mechanism when compared to other mechanisms such as external
strain, spontaneous adjustment and the secondary circulation induced by finite Rossby
number effects (Hoskins & Bretherton 1972; Blumen 2000; Gula et al. 2014; McWilliams
2017). Non-traditional frontogenesis may be relevant in a small region around the equator
where δ > O(1), though, since TTW is unlikely to be the dominant balance in this region,
it is not possible to draw any conclusions from this analysis.

5.3. The along-front flow

The depth-dependent along-front velocity components are given by

u′0 =
√

EK(ζ)
∂b0
∂y

, u′1 = −EB(ζ)
∂2b0
∂y2

−
√

EK(ζ)
∂2ψ0

∂y2
, (5.7)

were the two terms of u′1 arise from the modified horizontal momentum balance and the
modified hydrostatic balance similarly to the terms of φ1 in Eq. (5.6).

Fig. 5 shows the depth-dependent along-front velocity correct to O(δ) for the cases of
δ = 0 and δ = 0.4 with T = 1. The along-front flow is dominated by a thermal wind
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Figure 6: Comparison between the TTW and modified TTW solutions for E = 0.01 and
T = 1. Solutions are shown correct to O(δ). (a) b′/(Ro Pr) for δ = 0, (b) b′/(Ro Pr) for
δ = 0.4, (c) N2/(Ro Pr) for δ = 0, and (d) N2/(Ro Pr) for δ = 0.4.

shear modified by vertical mixing (Crowe & Taylor 2018) and non-traditional effects are
seen to be small. Therefore, the most significant effect of non-traditional rotation on the
along-front flow is the development of the depth-independent jets shown in Fig. 2 though
if the jets become large, significant modification of the depth-dependent flow may occur
through the second term of Eq. (5.7).

5.4. Buoyancy and stratification

As noted above, the depth averaged buoyancy remains equal to b0 for the simple
case of b0 = tanh y. However, the vertical structure of the buoyancy field and the
associated stratification are determined by the frontal circulation so are still affected
by non-traditional rotation. These terms appear at orders O(δ2) and O(δ3) and from
Eq. (4.6) are given by

b2 = −RPr
√

EK(ζ)

(
∂b0
∂y

)2

, b3 = RPr

(
ED1(ζ)

∂b0
∂y

∂2b0
∂y2

+
√

EK(ζ)
∂b0
∂y

∂2ψ0

∂y2

)
. (5.8)

The lowest order buoyancy term with vertical structure, b2, describes the stratification
maintained by an advection-diffusion balance between the advection of buoyancy by the
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Figure 7: (a) The first term of M2
3 from Eq. (5.9). (b) The second term of M2

3 from
Eq. (5.9). Results are shown for E = 0.01, RPr = 1, and T = 1.

leading order circulation, φ0, and the vertical mixing of buoyancy (Crowe & Taylor 2018).
A similar balance occurs at O(δ3) so the first (second) term of b3 in Eq. (5.8) describes
the stratification maintained by the first (second) term of φ1.

Fig. 6 shows the depth-dependent buoyancy, b′, and vertical stratification, N2 = ∂b/∂z,
correct to O(δ3) for E = 0.01 and T = 1. Solutions are shown for δ = 0 and δ = 0.4.
Since b′ and N2 are linear in Ro Pr through the factor of R δ2 Pr, results are plotted for
b′/(Ro Pr) and N2/(Ro Pr) to remove this dependence. The advection-diffusion balance
is seen to drive a stable restratification of the front and modification by non-traditional
effects is small unless ψ0 becomes large.

From Eq. (5.8) the order O(δ3) horizontal buoyancy gradient may be calculated as

M2
3 =

∂b3
∂y

= RPr

(
ED1(ζ)

∂

∂y

[
∂b0
∂y

∂2b0
∂y2

]
+
√

EK(ζ)
∂

∂y

[
∂b0
∂y

∂2ψ0

∂y2

])
. (5.9)

The two terms of Eq. (5.9) are plotted in Fig. 7 for E = 0.01, RPr = 1 and T = 1.
Regions of positive horizontal buoyancy gradient are observed for both terms in M2

3 ,
these regions correspond to frontal sharpening due to the cross-front velocity convergence
seen in Fig. 4.

5.5. Shear dispersive spreading

For b0 = b0(y), Eq. (4.9) becomes

∂b0
∂t

= Ro2 Pr
∂

∂y

[
c3

(
∂b0
∂y

)3

+ δ c4

(
∂b0
∂y

)2
∂2b0
∂y2

]
, (5.10)

for

c3(E) = EK ′2 and c4(E) = 2
√

E3AK. (5.11)

This equation is derived using the ψ0 independent terms from b′3 and u′H1 and corresponds
to the case of weak vorticity generation, ψ0 = 0. Over the long timescale of shear
dispersive spreading, t = O(1/δ4), significant vorticity generation is expected. However,
the case of ψ0 = 0 is considered here to isolate the effect of the ψ independent terms.

As δ → 0, Eq. (5.10) reduces to the result of Crowe & Taylor (2018) where the front
approaches a self-similar solution and spreads as y ∼ t1/4. This self-similar solution
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Figure 8: (a) The buoyancy field, b0, from numerically solving Eq. (5.10). Solutions are
calculated for r = δ c4/c3 = 0 (red) and r = 0.2 (blue) and shown for Ro2Pr c3 t ∈
[0, 2.5, 5, 7.5, 10] with steeper solutions corresponding to earlier times. (b) The difference
in b0 between the r = 0 results and the r = 0.2 results for the same time values as (a).

is odd in y hence the high buoyancy and low buoyancy sides evolve in the same way.
However, the c4 term breaks this y symmetry due to an odd number of y derivatives
so both sides are expected to evolve differently for non-zero δ. To test this prediction
Eq. (5.10) is solved numerically using the Dedalus framework (Burns et al. 2020). The
units of time are re-scaled such that Ro2Pr c3 = 1 leaving r = δ c4/c3 as the only free
parameter. Simulations are run for r = 0 and r = 0.2 and initialised using the profile
b0(t = 0) = tanh y. Sixth-order hyperdiffusion with a hyperdiffusivity of ν6 = 3 × 10−9

is included for numerical stability and simulations are run until Ro2Pr c3 t = 10 using
a third order implicit-explicit Runge-Kutta scheme and a domain of y ∈ [−5, 5] with
Ny = 256 grid-points.

Fig. 8 shows the numerical solutions for b0 for r = 0 and r = 0.2 at a range of times.
The difference between these two solutions is plotted in panel (b) allowing the expected
asymmetry due to non-traditional effects to be observed. The effect of the non-traditional
term is found to be small and of greatest importance near the frontal edges where the
curvature, ∂2b0/∂y

2, is large. Therefore it is expected that non-traditional effects will not
play a significant role in the shear dispersive spreading of a front without the inclusion
of strong vorticity generation.

Over long times, a large amount of vorticity is expected to be generated by both vertical
mixing (Crowe & Taylor 2019b) and non-traditional effects. This vorticity manifests
as depth-independent jets and can act to modify the total vorticity of the system. If
this vorticity is sufficiently strong, local vorticity terms can appear in the leading order
turbulent thermal wind balance. These terms will modify the Coriolis force, resulting
in a modified depth-dependent velocity and hence a modified circulation. Therefore it is
predicted that the generation of vorticity will play a more important role in the evolution
of b0 than the ψ0 independent circulation considered here. The effects of large ψ0 could
be considered using the approach of Crowe & Taylor (2019b) however such solutions are
expected to be complicated and provide no new insight into the problem so will not be
considered here.
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6. The finite Rossby number regime

Throughout we have taken Ro = O(δ2). This assumption is predominantly for math-
ematical convenience as it results in linear equations for the velocity at the first two
orders in δ. However, frontal systems in which non-traditional effects are important are
unlikely to have small Rossby numbers. Here, typical frontal parameters are discussed
and numerical simulations are presented for parameters outside of the regime considered
above.

6.1. Typical frontal parameters

The small parameter describing non-traditional effects is the ratio of the vertical and
horizontal components of the rotation vector scaled by the aspect ratio and is given by

δ =
H

L

1

tan θ
, (6.1)

for latitude θ, layer depth H and typical frontal width L. The requirement that Ro =
O(δ2) therefore implies that

B ∼ Hf̃2, (6.2)

where B is the typical buoyancy difference across the front. Taking typical values of
f̃ ≈ 10−4 s−1 and H = 100 m gives a buoyancy difference which is much smaller than
the typical values of B ≈ 10−4 ms−2. Therefore, for this asymptotic regime to hold, the
frontal velocities and hence the Rossby number would have to be much smaller than
would be expected physically.

To determine more physical values of the relevant parameters, note that non-traditional
effects are most important in the tropical and subtropical regions where tan θ < 1. Here,
fronts with small horizontal scales, L ∼ 1 km, may have order 1 values of δ; however, the
Rossby number would also be order 1 for these small scale fronts. This case of Ro = O(1)
and δ = O(0.1 − 1) is likely to be the most physically relevant regime. Previous studies
(Crowe & Taylor 2019b) have noted that TTW balance can remain valid even for the
case of finite Rossby numbers so numerical simulations are now performed to test if the
phenomenon described above are relevant to this regime.

6.2. Numerical simulations for Ro = 1

Here, Eq. (2.5) is solved subject to no-stress and no-flux boundary conditions using the
Dedalus package (Burns et al. 2020). These numerical simulations are two dimensional;
the cross-front direction is taken to align with the y axis where non-traditional effects
are maximised and ∂/∂x is set to zero. Fields are expanded in terms of a Fourier basis in
the horizontal (y) direction and a Chebyshev basis in the vertical (z) direction and time-
stepped using a third order implicit-explicit Runge-Kutta scheme. Horizontal mixing with
a viscosity of 10−4 is included for numerical stability. Simulations are initialised using
the O(1) TTW solution for velocity and buoyancy given in Section 4 for b0 = tanh y and
ψ0 = 0.

Fig. 9 shows numerical results for Ro = 0.1, δ = 1 and E = 0.1. Fig. 9.(a) shows
the development of the along-front jets through the growth of streamfunction of the
depth-averaged flow, ψ, with time. These profiles for ψ are consistent with the analytical
predictions shown in Fig. 2.(a), differing by less than 3% from the theory despite the
use of an order 1 value of δ in an asymptotic expression that is known only to O(δ).
Fig. 9.(b) shows the O(δ) component of the streamfunction of the frontal circulation, φ1,
at t = 2. Here φ1 is calculated as the difference between the total value of φ and the value
of φ0 calculated using Eq. (5.6). Again the results are well described by the theory as the
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Figure 9: Results from a numerical simulation with (Ro, δ,E) = (0.1, 1, 0.1) showing
(a) the streamfunction, ψ, describing the depth-averaged along-front flow and (b) the
circulation component φ1 at t = 2.
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Figure 10: Results from a numerical simulation with (Ro, δ,E) = (1, 1, 0.1) showing (a)
the difference in streamfunction, ∆ψ, between the results for δ = 1 and δ = 0 and (b)
the difference in frontal circulation, ∆φ, at t = 2.

structure of these circulation cells can be seen to be a sum of the components shown in
Fig. 4.(a) and Fig. 4.(b). The accuracy of the theoretical predictions for order 1 values
of δ suggests that the solutions of Section 4 are valid, even outside of the asymptotic
regime considered.

Fig. 10 shows numerical results for Ro = 1, δ = 1 and E = 0.1. Here, the effects
of nonlinearity become significant and it is necessary to separate the effects of finite
Ro from the effects of finite δ. This may be done by running another simulation with
(Ro, δ,E) = (1, 0, 0.2) and calculating the difference

∆ϕ = ϕ|δ=1 − ϕ|δ=0, (6.3)

for some field ϕ. Fig. 10.(a) shows the value of ∆ψ for a range of value of t. Similarly to
the case of Ro = 0.1, the along front flow is found to be well described by the theoretical
predictions with a difference of around 4% between ∆ψ and the prediction for ψ0 + δ ψ1.
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The difference in frontal circulation, ∆φ, is shown in Fig. 10.(b). While qualitatively
similar to theoretical predictions and the case of Ro = 0.1, the nonlinearity and non-
traditional components appear to interact nonlinearly resulting in some deviation from
the predictions. In particular, the centre of the middle circulation cell in Fig. 10.(b) is seen
to split in two. Nonetheless, even for cases far outside the asymptotic regime considered
analytically, the effects of including non-traditional rotation appear to be qualitatively
the same as discussed above, with the generation of along-front jets and a modification
of the frontal circulation.

7. Discussion and conclusions

Here the effects of the non-traditional component of rotation on a front in turbulent
thermal wind balance have been considered. Solutions are calculated as a perturbation
of the TTW solutions of Crowe & Taylor (2018, 2019b) using an asymptotic approach.
The magnitude of the non-traditional correction terms is found to depend strongly on
the direction of the front. Fronts where the along-front direction is aligned with North-
South are found to be unaffected by the non-traditional rotation terms. Conversely,
non-traditional effects are maximised for fronts aligned with East-West.

A primary effect of the non-traditional rotation is the generation of vertical vorticity
by the horizontal component of the non-traditional Coriolis force, f̃w. This vorticity
is generated in regions of strong vertical velocity and manifests as along-front jets.
Over timescales of t ∼ 1/(δf) strong vorticity generation is expected, resulting in a
modification of the total vertical vorticity of the system once the generated vorticity is of
similar magnitude to the planetary vorticity, f . In this case, relative vorticity terms must
be included in the leading order balance (Wenegrat & Thomas 2017; Crowe & Taylor
2019b) resulting in a modified leading order solution.

Additionally, the vertical component of the non-traditional Coriolis force, −f̃u, acts
to drive the system out of hydrostatic balance resulting in a new pressure component
and hence a new horizontal pressure gradient. Since the velocity, u, may be split into a
component corresponding to the background vorticity and a component corresponding
to the TTW flow, two new velocity contributions are obtained. Firstly, the background
vorticity drives a modification to the leading order TTW flow by changing the horizontal
pressure gradients. Secondly, the action of both non-traditional components of the Cori-
olis force on the leading order TTW solution drives a small correction flow consisting of
several circulation cells. The combined effect of these contributions may lead to a change
in the topographic structure of the total frontal circulation, which, for vanishing non-
traditional effects, consists of a single cell. Further, the modification of this circulation
may act to enhance the exchange of tracers through the mixed layer.

As observed in Crowe & Taylor (2018), the TTW velocity field consists of a leading-
order circulation around the front. This circulation acts to re-stratify the front and the
stratification is maintained through an advection-diffusion balance in the buoyancy equa-
tion. Since non-traditional effects modify this circulation, the stratification is modified by
the appearance of terms which depends both on the background buoyancy gradient and
the background vorticity. Some circulation components are observed to be frontogenetic,
driving a sharpening of horizontal buoyancy gradients. However, outside of a small region
around the equator where the analysis is not valid, this frontogenesis is expected to be
weak when compared with other mechanisms (Hoskins & Bretherton 1972; Shakespeare
& Taylor 2013; McWilliams 2017).

The correlation between the cross-front flow and the vertical buoyancy gradient may
drive the evolution of the background buoyancy field through shear dispersion. Non-
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traditional effects are expected to affect this process predominantly via the modification
of the velocity and buoyancy fields by the generated background vorticity. It should be
noted that an important feature of fronts is the presence of baroclinic instability (Stone
1966) which can also modify the background buoyancy field. Since baroclininc instability
would be expected to act over faster time scales than shear dispersive spreading and can
exist in the presence of strong vertical mixing (Crowe & Taylor 2019a), these instabilities
should be considered when studying the long-term behaviour of the front.

Using typical frontal parameters of H = 100 m and L = 10 km, the value of δ is
expected to be very small (δ 6 0.01) away from the tropical and subtropical regions.
Therefore, the non-traditional component of rotation is unlikely to play a significant role
in general frontal dynamics. However, in the low latitude regions near the equator it may
be possible to get δ ∼ 0.1 − 1 so fronts in these regions may have dynamics which are
strongly affected by non-traditional effects. An order 1 value of δ requires a fairly small
frontal width of L ∼ 1 km so fronts in this regime are also expected to have order 1
values of the Rossby number with nonlinear advection playing an important role. While
the asymptotic results presented in Section 4 are not strictly valid outside of the regime
Ro� δ � 1, numerical simulations indicate that the same phenomenon occur and that
these solutions can provide accurate predictions for the case of finite Rossby numbers
and finite non-traditional parameters even if they are not formally valid.

Another limitation of the asymptotic model is the idealised setup with turbulent mixing
represented by a constant turbulent Ekman number and any large-scale geostrophic flow
components being neglected. The inclusion of a more realistic turbulence parametrisation
and a background flow field require a numerical approach and is a topic for future work.
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Appendix A. The O(δ) depth-dependent velocity

Here Eq. (3.19) is solved for the depth-dependent component on the O(δ) velocity field.
Substituting for w′0 using Eq. (3.9c) and p′1 using Eq. (3.13) gives

v1 +
∂2u1
∂ζ2

= E
∂

∂y

[
K1(ζ)

∂b0
∂y
−K2(ζ)

∂b0
∂x

]
+ z

[
∂b1
∂x

+
∂u0
∂x

]
, (A 1a)

u1 −
∂2v1
∂ζ2

= E
∂

∂y

[
K1(ζ)

∂b0
∂x

+K2(ζ)
∂b0
∂y

]
− z

[
∂b1
∂y

+
∂u0
∂y

]
, (A 1b)

where

K1(ζ) = K ′(ζ)− K(ζ0)

ζ0
, K2(ζ) = K ′′′(ζ)− K ′′(ζ0)

ζ0
+
ζ2

2
− ζ20

6
, (A 2)

and ζ = z/
√

E as before. The right-hand sides of Eq. (A 1) consist of two forcing terms
in square brackets, these can now be treated separately by linearity and a superscript
({1} and {2}) will be used to denote which forcing term a solution corresponds to. The
second forcing term resembles that of the leading order system, −∇Hp0 = −z∇Hb0, so
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can be solved similarly for solution

u
′{2}
1 =−

√
E

[
K ′′(ζ)

∂

∂x
−K(ζ)

∂

∂y

](
b1 −

∂ψ0

∂y

)
, (A 3a)

v
′{2}
1 =−

√
E

[
K(ζ)

∂

∂x
+K ′′(ζ)

∂

∂y

](
b1 −

∂ψ0

∂y

)
, (A 3b)

where u0 has been replaced using u0 = −∂ψ0/∂y. The first forcing term is more
complicated but the system may be solved by taking

u
′{1}
1 =E

∂

∂y

[
A(ζ)

∂b0
∂x
−B(ζ)

∂b0
∂y

]
, (A 4a)

v
′{1}
1 =E

∂

∂y

[
B(ζ)

∂b0
∂x

+A(ζ)
∂b0
∂y

]
, (A 4b)

based on the form of the equations. The functions A(ζ) and B(ζ) satisfy

A−B′′ = K ′(ζ)− K(ζ0)

ζ0
, and −B −A′′ = K ′′′(ζ)− K ′′(ζ0)

ζ0
+
ζ2

2
− ζ20

6
, (A 5)

which may be solved with no-stress boundary conditions to obtain solutions for A and
B. The solutions for each forcing term may now be summed to give the final solution for
(u′1, v

′
1).

Appendix B. Vertical structure functions

The vertical structure functions, A(ζ) and B(ζ), are determined as solutions of
Eq. (A 5). The first rows of the following solutions give the particular solution required
to solve Eq. (A 5) while the second rows give the complementary function component
required to satisfy no-stress boundary conditions on the top and bottom boundary.
Solutions are

A(ζ) = −ζK
′′(ζ) + 4

2
− K(ζ0)

ζ0
+(

4ζ20 + 5ζ0K(ζ0) + (K(ζ0))2 + (K ′′(ζ0))2
)

(K ′(ζ) + 1) + 3ζ0K
′′(ζ0)K ′′′(ζ)

2 [(K ′′(ζ0))2 + (K(ζ0) + ζ0)2]
,

(B 1)

and

B(ζ) = −ζK(ζ) + 2ζ2

2
+
K ′′(ζ0)

ζ0
+
ζ20
6

+

−
(
4ζ20 + 5ζ0K(ζ0) + (K(ζ0))2 + (K ′′(ζ0))2

)
K ′′′(ζ)− 3ζ0K

′′(ζ0) (K ′(ζ) + 1)

2 [(K ′′(ζ0))2 + (K(ζ0) + ζ0)2]
.

(B 2)

The function C(ζ) describes the vertical velocity and is calculated as a single vertical
integral of A by mass conservation. The integration constant is taken such that C is zero
on the top and bottom boundaries so C is given by

C(ζ) = 2(ζ − ζ0) +
1

2
(K(ζ) +K(ζ0))− ζK ′(ζ)

2
− K(ζ0)ζ

ζ0

+

(
4ζ20 + 5ζ0K(ζ0) + (K(ζ0))2 + (K ′′(ζ0))2

)
(K(ζ) + ζ −K(ζ0)− ζ0)

2 [(K ′′(ζ0))2 + (K(ζ0) + ζ0)2]
+

3ζ0K
′′(ζ0)(K ′′(ζ)−K ′′(ζ0))

2 [(K ′′(ζ0))2 + (K(ζ0) + ζ0)2]
.

(B 3)
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The structure functions which determine the structure of the vertical stratification are
D1(ζ) and D2(ζ)which are determined as solutions of D′′1 (ζ) = A(ζ) and D′′2 (ζ) = B(ζ)
with boundary conditions of no flux on the top and bottom boundaries (corresponding
to a vanishing first derivative on ζ = ±ζ0). Solutions are

D1(ζ) =B(ζ)−
[
K ′′′(ζ)− K ′′(ζ0)

ζ0

]
−
(
K(ζ0)

2ζ0
+

1

2

)(
ζ2 − 1

3
ζ20

)
, (B 4a)

D2(ζ) =−A(ζ)−
[
K ′(ζ)− K(ζ0)

ζ0

]
+

(
K ′′(ζ0)

2ζ0
+
ζ20
12

)(
ζ2 − 1

3
ζ20

)
− 1
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(
ζ4 − 1

5
ζ40

)
.

(B 4b)
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